summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibGfx/AffineTransform.cpp
blob: 96cf0ec52b8762d4dfc3116b609611e4d208e8ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/*
 * Copyright (c) 2020-2022, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Optional.h>
#include <LibGfx/AffineTransform.h>
#include <LibGfx/Quad.h>
#include <LibGfx/Rect.h>

namespace Gfx {

bool AffineTransform::is_identity() const
{
    return m_values[0] == 1 && m_values[1] == 0 && m_values[2] == 0 && m_values[3] == 1 && m_values[4] == 0 && m_values[5] == 0;
}

bool AffineTransform::is_identity_or_translation() const
{
    return a() == 1 && b() == 0 && c() == 0 && d() == 1;
}

float AffineTransform::x_scale() const
{
    return AK::hypot(m_values[0], m_values[1]);
}

float AffineTransform::y_scale() const
{
    return AK::hypot(m_values[2], m_values[3]);
}

FloatPoint AffineTransform::scale() const
{
    return { x_scale(), y_scale() };
}

float AffineTransform::x_translation() const
{
    return e();
}

float AffineTransform::y_translation() const
{
    return f();
}

FloatPoint AffineTransform::translation() const
{
    return { x_translation(), y_translation() };
}

AffineTransform& AffineTransform::scale(float sx, float sy)
{
    m_values[0] *= sx;
    m_values[1] *= sx;
    m_values[2] *= sy;
    m_values[3] *= sy;
    return *this;
}

AffineTransform& AffineTransform::scale(FloatPoint const& s)
{
    return scale(s.x(), s.y());
}

AffineTransform& AffineTransform::set_scale(float sx, float sy)
{
    m_values[0] = sx;
    m_values[1] = 0;
    m_values[2] = 0;
    m_values[3] = sy;
    return *this;
}

AffineTransform& AffineTransform::set_scale(FloatPoint const& s)
{
    return set_scale(s.x(), s.y());
}

AffineTransform& AffineTransform::translate(float tx, float ty)
{
    m_values[4] += tx * m_values[0] + ty * m_values[2];
    m_values[5] += tx * m_values[1] + ty * m_values[3];
    return *this;
}

AffineTransform& AffineTransform::translate(FloatPoint const& t)
{
    return translate(t.x(), t.y());
}

AffineTransform& AffineTransform::set_translation(float tx, float ty)
{
    m_values[4] = tx;
    m_values[5] = ty;
    return *this;
}

AffineTransform& AffineTransform::set_translation(FloatPoint const& t)
{
    return set_translation(t.x(), t.y());
}

AffineTransform& AffineTransform::multiply(AffineTransform const& other)
{
    AffineTransform result;
    result.m_values[0] = other.a() * a() + other.b() * c();
    result.m_values[1] = other.a() * b() + other.b() * d();
    result.m_values[2] = other.c() * a() + other.d() * c();
    result.m_values[3] = other.c() * b() + other.d() * d();
    result.m_values[4] = other.e() * a() + other.f() * c() + e();
    result.m_values[5] = other.e() * b() + other.f() * d() + f();
    *this = result;
    return *this;
}

AffineTransform& AffineTransform::rotate_radians(float radians)
{
    float sin_angle;
    float cos_angle;
    AK::sincos(radians, sin_angle, cos_angle);
    AffineTransform rotation(cos_angle, sin_angle, -sin_angle, cos_angle, 0, 0);
    multiply(rotation);
    return *this;
}

Optional<AffineTransform> AffineTransform::inverse() const
{
    auto determinant = a() * d() - b() * c();
    if (determinant == 0)
        return {};
    return AffineTransform {
        d() / determinant,
        -b() / determinant,
        -c() / determinant,
        a() / determinant,
        (c() * f() - d() * e()) / determinant,
        (b() * e() - a() * f()) / determinant,
    };
}

void AffineTransform::map(float unmapped_x, float unmapped_y, float& mapped_x, float& mapped_y) const
{
    mapped_x = a() * unmapped_x + c() * unmapped_y + e();
    mapped_y = b() * unmapped_x + d() * unmapped_y + f();
}

template<>
IntPoint AffineTransform::map(IntPoint const& point) const
{
    float mapped_x;
    float mapped_y;
    map(static_cast<float>(point.x()), static_cast<float>(point.y()), mapped_x, mapped_y);
    return { round_to<int>(mapped_x), round_to<int>(mapped_y) };
}

template<>
FloatPoint AffineTransform::map(FloatPoint const& point) const
{
    float mapped_x;
    float mapped_y;
    map(point.x(), point.y(), mapped_x, mapped_y);
    return { mapped_x, mapped_y };
}

template<>
IntSize AffineTransform::map(IntSize const& size) const
{
    return {
        round_to<int>(static_cast<float>(size.width()) * x_scale()),
        round_to<int>(static_cast<float>(size.height()) * y_scale()),
    };
}

template<>
FloatSize AffineTransform::map(FloatSize const& size) const
{
    return { size.width() * x_scale(), size.height() * y_scale() };
}

template<typename T>
static T smallest_of(T p1, T p2, T p3, T p4)
{
    return min(min(p1, p2), min(p3, p4));
}

template<typename T>
static T largest_of(T p1, T p2, T p3, T p4)
{
    return max(max(p1, p2), max(p3, p4));
}

template<>
FloatRect AffineTransform::map(FloatRect const& rect) const
{
    FloatPoint p1 = map(rect.top_left());
    FloatPoint p2 = map(rect.top_right().translated(1, 0));
    FloatPoint p3 = map(rect.bottom_right().translated(1, 1));
    FloatPoint p4 = map(rect.bottom_left().translated(0, 1));
    float left = smallest_of(p1.x(), p2.x(), p3.x(), p4.x());
    float top = smallest_of(p1.y(), p2.y(), p3.y(), p4.y());
    float right = largest_of(p1.x(), p2.x(), p3.x(), p4.x());
    float bottom = largest_of(p1.y(), p2.y(), p3.y(), p4.y());
    return { left, top, right - left, bottom - top };
}

template<>
IntRect AffineTransform::map(IntRect const& rect) const
{
    return enclosing_int_rect(map(FloatRect(rect)));
}

Quad<float> AffineTransform::map_to_quad(Rect<float> const& rect) const
{
    return {
        map(rect.top_left()),
        map(rect.top_right()),
        map(rect.bottom_right()),
        map(rect.bottom_left()),
    };
}

}