1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Optional.h>
#include <LibGfx/AffineTransform.h>
#include <LibGfx/Rect.h>
namespace Gfx {
bool AffineTransform::is_identity() const
{
return m_values[0] == 1 && m_values[1] == 0 && m_values[2] == 0 && m_values[3] == 1 && m_values[4] == 0 && m_values[5] == 0;
}
static float hypotenuse(float x, float y)
{
// FIXME: This won't handle overflow :(
return sqrt(x * x + y * y);
}
float AffineTransform::x_scale() const
{
return hypotenuse(m_values[0], m_values[1]);
}
float AffineTransform::y_scale() const
{
return hypotenuse(m_values[2], m_values[3]);
}
AffineTransform& AffineTransform::scale(float sx, float sy)
{
m_values[0] *= sx;
m_values[1] *= sx;
m_values[2] *= sy;
m_values[3] *= sy;
return *this;
}
AffineTransform& AffineTransform::translate(float tx, float ty)
{
m_values[4] += tx * m_values[0] + ty * m_values[2];
m_values[5] += tx * m_values[1] + ty * m_values[3];
return *this;
}
AffineTransform& AffineTransform::multiply(const AffineTransform& other)
{
AffineTransform result;
result.m_values[0] = other.a() * a() + other.b() * c();
result.m_values[1] = other.a() * b() + other.b() * d();
result.m_values[2] = other.c() * a() + other.d() * c();
result.m_values[3] = other.c() * b() + other.d() * d();
result.m_values[4] = other.e() * a() + other.f() * c() + e();
result.m_values[5] = other.e() * b() + other.f() * d() + f();
*this = result;
return *this;
}
AffineTransform& AffineTransform::rotate_radians(float radians)
{
float sin_angle = sinf(radians);
float cos_angle = cosf(radians);
AffineTransform rotation(cos_angle, sin_angle, -sin_angle, cos_angle, 0, 0);
multiply(rotation);
return *this;
}
void AffineTransform::map(float unmapped_x, float unmapped_y, float& mapped_x, float& mapped_y) const
{
mapped_x = (m_values[0] * unmapped_x + m_values[2] * unmapped_y + m_values[4]);
mapped_y = (m_values[1] * unmapped_x + m_values[3] * unmapped_y + m_values[5]);
}
template<>
IntPoint AffineTransform::map(const IntPoint& point) const
{
float mapped_x;
float mapped_y;
map(point.x(), point.y(), mapped_x, mapped_y);
return { roundf(mapped_x), roundf(mapped_y) };
}
template<>
FloatPoint AffineTransform::map(const FloatPoint& point) const
{
float mapped_x;
float mapped_y;
map(point.x(), point.y(), mapped_x, mapped_y);
return { mapped_x, mapped_y };
}
template<>
IntSize AffineTransform::map(const IntSize& size) const
{
return { roundf(size.width() * x_scale()), roundf(size.height() * y_scale()) };
}
template<>
FloatSize AffineTransform::map(const FloatSize& size) const
{
return { size.width() * x_scale(), size.height() * y_scale() };
}
template<typename T>
static T smallest_of(T p1, T p2, T p3, T p4)
{
return min(min(p1, p2), min(p3, p4));
}
template<typename T>
static T largest_of(T p1, T p2, T p3, T p4)
{
return max(max(p1, p2), max(p3, p4));
}
template<>
FloatRect AffineTransform::map(const FloatRect& rect) const
{
FloatPoint p1 = map(rect.top_left());
FloatPoint p2 = map(rect.top_right().translated(1, 0));
FloatPoint p3 = map(rect.bottom_right().translated(1, 1));
FloatPoint p4 = map(rect.bottom_left().translated(0, 1));
float left = smallest_of(p1.x(), p2.x(), p3.x(), p4.x());
float top = smallest_of(p1.y(), p2.y(), p3.y(), p4.y());
float right = largest_of(p1.x(), p2.x(), p3.x(), p4.x());
float bottom = largest_of(p1.y(), p2.y(), p3.y(), p4.y());
return { left, top, right - left, bottom - top };
}
template<>
IntRect AffineTransform::map(const IntRect& rect) const
{
return enclosing_int_rect(map(FloatRect(rect)));
}
}
|