summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibGL/SoftwareRasterizer.cpp
blob: bf561b87f7de789a411becb436c64b1c214f35e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
/*
 * Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include "SoftwareRasterizer.h"
#include <AK/Function.h>
#include <LibGfx/Painter.h>
#include <LibGfx/Vector2.h>
#include <LibGfx/Vector3.h>

namespace GL {

using IntVector2 = Gfx::Vector2<int>;
using IntVector3 = Gfx::Vector3<int>;

static constexpr int RASTERIZER_BLOCK_SIZE = 16;

constexpr static int edge_function(const IntVector2& a, const IntVector2& b, const IntVector2& c)
{
    return ((c.x() - a.x()) * (b.y() - a.y()) - (c.y() - a.y()) * (b.x() - a.x()));
}

template<typename T>
constexpr static T interpolate(const T& v0, const T& v1, const T& v2, const FloatVector3& barycentric_coords)
{
    return v0 * barycentric_coords.x() + v1 * barycentric_coords.y() + v2 * barycentric_coords.z();
}

template<typename T>
constexpr static T mix(const T& x, const T& y, float interp)
{
    return x * (1 - interp) + y * interp;
}

static Gfx::RGBA32 to_rgba32(const FloatVector4& v)
{
    auto clamped = v.clamped(0, 1);
    u8 r = clamped.x() * 255;
    u8 g = clamped.y() * 255;
    u8 b = clamped.z() * 255;
    u8 a = clamped.w() * 255;
    return a << 24 | r << 16 | g << 8 | b;
}

static FloatVector4 to_vec4(Gfx::RGBA32 rgba)
{
    return {
        ((rgba >> 16) & 0xff) / 255.0f,
        ((rgba >> 8) & 0xff) / 255.0f,
        (rgba & 0xff) / 255.0f,
        ((rgba >> 24) & 0xff) / 255.0f
    };
}

static constexpr void setup_blend_factors(GLenum mode, FloatVector4& constant, float& src_alpha, float& dst_alpha, float& src_color, float& dst_color)
{
    constant = { 0.0f, 0.0f, 0.0f, 0.0f };
    src_alpha = 0;
    dst_alpha = 0;
    src_color = 0;
    dst_color = 0;

    switch (mode) {
    case GL_ZERO:
        break;
    case GL_ONE:
        constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        break;
    case GL_SRC_COLOR:
        src_color = 1;
        break;
    case GL_ONE_MINUS_SRC_COLOR:
        constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        src_color = -1;
        break;
    case GL_SRC_ALPHA:
        src_alpha = 1;
        break;
    case GL_ONE_MINUS_SRC_ALPHA:
        constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        src_alpha = -1;
        break;
    case GL_DST_ALPHA:
        dst_alpha = 1;
        break;
    case GL_ONE_MINUS_DST_ALPHA:
        constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        dst_alpha = -1;
        break;
    case GL_DST_COLOR:
        dst_color = 1;
        break;
    case GL_ONE_MINUS_DST_COLOR:
        constant = { 1.0f, 1.0f, 1.0f, 1.0f };
        dst_color = -1;
        break;
    case GL_SRC_ALPHA_SATURATE:
        // FIXME: How do we implement this?
        break;
    default:
        VERIFY_NOT_REACHED();
    }
}

template<typename PS>
static void rasterize_triangle(const RasterizerOptions& options, Gfx::Bitmap& render_target, DepthBuffer& depth_buffer, const GLTriangle& triangle, PS pixel_shader)
{
    // Since the algorithm is based on blocks of uniform size, we need
    // to ensure that our render_target size is actually a multiple of the block size
    VERIFY((render_target.width() % RASTERIZER_BLOCK_SIZE) == 0);
    VERIFY((render_target.height() % RASTERIZER_BLOCK_SIZE) == 0);

    // Calculate area of the triangle for later tests
    IntVector2 v0 { (int)triangle.vertices[0].position.x(), (int)triangle.vertices[0].position.y() };
    IntVector2 v1 { (int)triangle.vertices[1].position.x(), (int)triangle.vertices[1].position.y() };
    IntVector2 v2 { (int)triangle.vertices[2].position.x(), (int)triangle.vertices[2].position.y() };

    int area = edge_function(v0, v1, v2);
    if (area == 0)
        return;

    float one_over_area = 1.0f / area;

    FloatVector4 src_constant {};
    float src_factor_src_alpha = 0;
    float src_factor_dst_alpha = 0;
    float src_factor_src_color = 0;
    float src_factor_dst_color = 0;

    FloatVector4 dst_constant {};
    float dst_factor_src_alpha = 0;
    float dst_factor_dst_alpha = 0;
    float dst_factor_src_color = 0;
    float dst_factor_dst_color = 0;

    if (options.enable_blending) {
        setup_blend_factors(
            options.blend_source_factor,
            src_constant,
            src_factor_src_alpha,
            src_factor_dst_alpha,
            src_factor_src_color,
            src_factor_dst_color);

        setup_blend_factors(
            options.blend_destination_factor,
            dst_constant,
            dst_factor_src_alpha,
            dst_factor_dst_alpha,
            dst_factor_src_color,
            dst_factor_dst_color);
    }

    // Obey top-left rule:
    // This sets up "zero" for later pixel coverage tests.
    // Depending on where on the triangle the edge is located
    // it is either tested against 0 or 1, effectively
    // turning "< 0" into "<= 0"
    IntVector3 zero { 1, 1, 1 };
    if (v1.y() > v0.y() || (v1.y() == v0.y() && v1.x() < v0.x()))
        zero.set_z(0);
    if (v2.y() > v1.y() || (v2.y() == v1.y() && v2.x() < v1.x()))
        zero.set_x(0);
    if (v0.y() > v2.y() || (v0.y() == v2.y() && v0.x() < v2.x()))
        zero.set_y(0);

    // This function calculates the 3 edge values for the pixel relative to the triangle.
    auto calculate_edge_values = [v0, v1, v2](const IntVector2& p) -> IntVector3 {
        return {
            edge_function(v1, v2, p),
            edge_function(v2, v0, p),
            edge_function(v0, v1, p),
        };
    };

    // This function tests whether a point as identified by its 3 edge values lies within the triangle
    auto test_point = [zero](const IntVector3& edges) -> bool {
        return edges.x() >= zero.x()
            && edges.y() >= zero.y()
            && edges.z() >= zero.z();
    };

    // Calculate block-based bounds
    // clang-format off
    const int bx0 = max(0,                      min(min(v0.x(), v1.x()), v2.x())                            ) / RASTERIZER_BLOCK_SIZE;
    const int bx1 = min(render_target.width(),  max(max(v0.x(), v1.x()), v2.x()) + RASTERIZER_BLOCK_SIZE - 1) / RASTERIZER_BLOCK_SIZE;
    const int by0 = max(0,                      min(min(v0.y(), v1.y()), v2.y())                            ) / RASTERIZER_BLOCK_SIZE;
    const int by1 = min(render_target.height(), max(max(v0.y(), v1.y()), v2.y()) + RASTERIZER_BLOCK_SIZE - 1) / RASTERIZER_BLOCK_SIZE;
    // clang-format on

    static_assert(RASTERIZER_BLOCK_SIZE < sizeof(int) * 8, "RASTERIZER_BLOCK_SIZE must be smaller than the pixel_mask's width in bits");
    int pixel_mask[RASTERIZER_BLOCK_SIZE];

    FloatVector4 pixel_buffer[RASTERIZER_BLOCK_SIZE][RASTERIZER_BLOCK_SIZE];

    // Iterate over all blocks within the bounds of the triangle
    for (int by = by0; by < by1; by++) {
        for (int bx = bx0; bx < bx1; bx++) {

            // Edge values of the 4 block corners
            // clang-format off
            auto b0 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE,                         by * RASTERIZER_BLOCK_SIZE });
            auto b1 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE, by * RASTERIZER_BLOCK_SIZE });
            auto b2 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE,                         by * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE });
            auto b3 = calculate_edge_values({ bx * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE, by * RASTERIZER_BLOCK_SIZE + RASTERIZER_BLOCK_SIZE });
            // clang-format on

            // If the whole block is outside any of the triangle edges we can discard it completely
            // We test this by and'ing the relevant edge function values together for all block corners
            // and checking if the negative sign bit is set for all of them
            if ((b0.x() & b1.x() & b2.x() & b3.x()) & 0x80000000)
                continue;

            if ((b0.y() & b1.y() & b2.y() & b3.y()) & 0x80000000)
                continue;

            if ((b0.z() & b1.z() & b2.z() & b3.z()) & 0x80000000)
                continue;

            // edge value derivatives
            auto dbdx = (b1 - b0) / RASTERIZER_BLOCK_SIZE;
            auto dbdy = (b2 - b0) / RASTERIZER_BLOCK_SIZE;
            // step edge value after each horizontal span: 1 down, BLOCK_SIZE left
            auto step_y = dbdy - dbdx * RASTERIZER_BLOCK_SIZE;

            int x0 = bx * RASTERIZER_BLOCK_SIZE;
            int y0 = by * RASTERIZER_BLOCK_SIZE;

            // Generate the coverage mask
            if (test_point(b0) && test_point(b1) && test_point(b2) && test_point(b3)) {
                // The block is fully contained within the triangle. Fill the mask with all 1s
                for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
                    pixel_mask[y] = -1;
                }
            } else {
                // The block overlaps at least one triangle edge.
                // We need to test coverage of every pixel within the block.
                auto coords = b0;
                for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) {
                    pixel_mask[y] = 0;

                    for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx) {
                        if (test_point(coords))
                            pixel_mask[y] |= 1 << x;
                    }
                }
            }

            // AND the depth mask onto the coverage mask
            if (options.enable_depth_test) {
                int z_pass_count = 0;
                auto coords = b0;

                for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) {
                    if (pixel_mask[y] == 0) {
                        coords += dbdx * RASTERIZER_BLOCK_SIZE;
                        continue;
                    }

                    auto* depth = &depth_buffer.scanline(y0 + y)[x0];
                    for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx, depth++) {
                        if (~pixel_mask[y] & (1 << x))
                            continue;

                        auto barycentric = FloatVector3(coords.x(), coords.y(), coords.z()) * one_over_area;
                        float z = interpolate(triangle.vertices[0].position.z(), triangle.vertices[1].position.z(), triangle.vertices[2].position.z(), barycentric);

                        z = options.depth_min + (options.depth_max - options.depth_min) * (z + 1) / 2;

                        // FIXME: Also apply depth_offset_factor which depends on the depth gradient
                        z += options.depth_offset_constant * NumericLimits<float>::epsilon();

                        bool pass = false;
                        switch (options.depth_func) {
                        case GL_ALWAYS:
                            pass = true;
                            break;
                        case GL_NEVER:
                            pass = false;
                            break;
                        case GL_GREATER:
                            pass = z > *depth;
                            break;
                        case GL_GEQUAL:
                            pass = z >= *depth;
                            break;
                        case GL_NOTEQUAL:
#ifdef __SSE__
                            pass = z != *depth;
#else
                            pass = bit_cast<u32>(z) != bit_cast<u32>(*depth);
#endif
                            break;
                        case GL_EQUAL:
#ifdef __SSE__
                            pass = z == *depth;
#else
                            //
                            // This is an interesting quirk that occurs due to us using the x87 FPU when Serenity is
                            // compiled for the i386 target. When we calculate our depth value to be stored in the buffer,
                            // it is an 80-bit x87 floating point number, however, when stored into the DepthBuffer, this is
                            // truncated to 32 bits. This 38 bit loss of precision means that when x87 `FCOMP` is eventually
                            // used here the comparison fails.
                            // This could be solved by using a `long double` for the depth buffer, however this would take
                            // up significantly more space and is completely overkill for a depth buffer. As such, comparing
                            // the first 32-bits of this depth value is "good enough" that if we get a hit on it being
                            // equal, we can pretty much guarantee that it's actually equal.
                            //
                            pass = bit_cast<u32>(z) == bit_cast<u32>(*depth);
#endif
                            break;
                        case GL_LEQUAL:
                            pass = z <= *depth;
                            break;
                        case GL_LESS:
                            pass = z < *depth;
                            break;
                        }

                        if (!pass) {
                            pixel_mask[y] ^= 1 << x;
                            continue;
                        }

                        if (options.enable_depth_write)
                            *depth = z;

                        z_pass_count++;
                    }
                }

                // Nice, no pixels passed the depth test -> block rejected by early z
                if (z_pass_count == 0)
                    continue;
            }

            // We will not update the color buffer at all
            if (!options.color_mask || options.draw_buffer == GL_NONE)
                continue;

            // Draw the pixels according to the previously generated mask
            auto coords = b0;
            for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++, coords += step_y) {
                if (pixel_mask[y] == 0) {
                    coords += dbdx * RASTERIZER_BLOCK_SIZE;
                    continue;
                }

                auto* pixel = pixel_buffer[y];
                for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, coords += dbdx, pixel++) {
                    if (~pixel_mask[y] & (1 << x))
                        continue;

                    // Perspective correct barycentric coordinates
                    auto barycentric = FloatVector3(coords.x(), coords.y(), coords.z()) * one_over_area;
                    float interpolated_reciprocal_w = interpolate(triangle.vertices[0].position.w(), triangle.vertices[1].position.w(), triangle.vertices[2].position.w(), barycentric);
                    float interpolated_w = 1 / interpolated_reciprocal_w;
                    barycentric = barycentric * FloatVector3(triangle.vertices[0].position.w(), triangle.vertices[1].position.w(), triangle.vertices[2].position.w()) * interpolated_w;

                    // FIXME: make this more generic. We want to interpolate more than just color and uv
                    FloatVector4 vertex_color;
                    if (options.shade_smooth) {
                        vertex_color = interpolate(
                            triangle.vertices[0].color,
                            triangle.vertices[1].color,
                            triangle.vertices[2].color,
                            barycentric);
                    } else {
                        vertex_color = triangle.vertices[0].color;
                    }

                    auto uv = interpolate(
                        triangle.vertices[0].tex_coord,
                        triangle.vertices[1].tex_coord,
                        triangle.vertices[2].tex_coord,
                        barycentric);

                    // Calculate depth of fragment for fog
                    float z = interpolate(triangle.vertices[0].position.z(), triangle.vertices[1].position.z(), triangle.vertices[2].position.z(), barycentric);
                    z = options.depth_min + (options.depth_max - options.depth_min) * (z + 1) / 2;

                    *pixel = pixel_shader(uv, vertex_color, z);
                }
            }

            if (options.enable_alpha_test && options.alpha_test_func != GL_ALWAYS) {
                // FIXME: I'm not sure if this is the right place to test this.
                // If we tested this right at the beginning of our rasterizer routine
                // we could skip a lot of work but the GL spec might disagree.
                if (options.alpha_test_func == GL_NEVER)
                    continue;

                for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
                    auto src = pixel_buffer[y];
                    for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++) {
                        if (~pixel_mask[y] & (1 << x))
                            continue;

                        bool passed = true;

                        switch (options.alpha_test_func) {
                        case GL_LESS:
                            passed = src->w() < options.alpha_test_ref_value;
                            break;
                        case GL_EQUAL:
                            passed = src->w() == options.alpha_test_ref_value;
                            break;
                        case GL_LEQUAL:
                            passed = src->w() <= options.alpha_test_ref_value;
                            break;
                        case GL_GREATER:
                            passed = src->w() > options.alpha_test_ref_value;
                            break;
                        case GL_NOTEQUAL:
                            passed = src->w() != options.alpha_test_ref_value;
                            break;
                        case GL_GEQUAL:
                            passed = src->w() >= options.alpha_test_ref_value;
                            break;
                        }

                        if (!passed)
                            pixel_mask[y] ^= (1 << x);
                    }
                }
            }

            if (options.enable_blending) {
                // Blend color values from pixel_buffer into render_target
                for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
                    auto src = pixel_buffer[y];
                    auto dst = &render_target.scanline(y + y0)[x0];
                    for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++, dst++) {
                        if (~pixel_mask[y] & (1 << x))
                            continue;

                        auto float_dst = to_vec4(*dst);

                        auto src_factor = src_constant
                            + *src * src_factor_src_color
                            + FloatVector4(src->w(), src->w(), src->w(), src->w()) * src_factor_src_alpha
                            + float_dst * src_factor_dst_color
                            + FloatVector4(float_dst.w(), float_dst.w(), float_dst.w(), float_dst.w()) * src_factor_dst_alpha;

                        auto dst_factor = dst_constant
                            + *src * dst_factor_src_color
                            + FloatVector4(src->w(), src->w(), src->w(), src->w()) * dst_factor_src_alpha
                            + float_dst * dst_factor_dst_color
                            + FloatVector4(float_dst.w(), float_dst.w(), float_dst.w(), float_dst.w()) * dst_factor_dst_alpha;

                        *dst = (*dst & ~options.color_mask) | (to_rgba32(*src * src_factor + float_dst * dst_factor) & options.color_mask);
                    }
                }
            } else {
                // Copy color values from pixel_buffer into render_target
                for (int y = 0; y < RASTERIZER_BLOCK_SIZE; y++) {
                    auto src = pixel_buffer[y];
                    auto dst = &render_target.scanline(y + y0)[x0];
                    for (int x = 0; x < RASTERIZER_BLOCK_SIZE; x++, src++, dst++) {
                        if (~pixel_mask[y] & (1 << x))
                            continue;

                        *dst = (*dst & ~options.color_mask) | (to_rgba32(*src) & options.color_mask);
                    }
                }
            }
        }
    }
}

static Gfx::IntSize closest_multiple(const Gfx::IntSize& min_size, size_t step)
{
    int width = ((min_size.width() + step - 1) / step) * step;
    int height = ((min_size.height() + step - 1) / step) * step;
    return { width, height };
}

SoftwareRasterizer::SoftwareRasterizer(const Gfx::IntSize& min_size)
    : m_render_target { Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE)).release_value_but_fixme_should_propagate_errors() }
    , m_depth_buffer { adopt_own(*new DepthBuffer(closest_multiple(min_size, RASTERIZER_BLOCK_SIZE))) }
{
}

void SoftwareRasterizer::submit_triangle(const GLTriangle& triangle, const Array<TextureUnit, 32>& texture_units)
{
    rasterize_triangle(m_options, *m_render_target, *m_depth_buffer, triangle, [this, &texture_units](const FloatVector2& uv, const FloatVector4& color, float z) -> FloatVector4 {
        FloatVector4 fragment = color;

        for (const auto& texture_unit : texture_units) {

            // No texture is bound to this texture unit
            if (!texture_unit.is_bound())
                continue;

            // FIXME: Don't assume Texture2D
            auto texel = texture_unit.bound_texture_2d()->sampler().sample(uv);

            // FIXME: Implement more blend modes
            switch (texture_unit.env_mode()) {
            case GL_MODULATE:
            default:
                fragment = fragment * texel;
                break;
            case GL_REPLACE:
                fragment = texel;
                break;
            case GL_DECAL: {
                float src_alpha = fragment.w();
                float one_minus_src_alpha = 1 - src_alpha;
                fragment.set_x(texel.x() * src_alpha + fragment.x() * one_minus_src_alpha);
                fragment.set_y(texel.y() * src_alpha + fragment.y() * one_minus_src_alpha);
                fragment.set_z(texel.z() * src_alpha + fragment.z() * one_minus_src_alpha);
                break;
            }
            }
        }

        // Calculate fog
        // Math from here: https://opengl-notes.readthedocs.io/en/latest/topics/texturing/aliasing.html
        if (m_options.fog_enabled) {
            float factor = 0.0f;
            switch (m_options.fog_mode) {
            case GL_LINEAR:
                factor = (m_options.fog_end - z) / (m_options.fog_end - m_options.fog_start);
                break;
            case GL_EXP:
                factor = exp(-((m_options.fog_density * z)));
                break;
            case GL_EXP2:
                factor = exp(-((m_options.fog_density * z) * (m_options.fog_density * z)));
                break;
            default:
                break;
            }

            // Mix texel with fog
            fragment = mix(m_options.fog_color, fragment, factor);
        }

        return fragment;
    });
}

void SoftwareRasterizer::resize(const Gfx::IntSize& min_size)
{
    wait_for_all_threads();

    m_render_target = Gfx::Bitmap::try_create(Gfx::BitmapFormat::BGRA8888, closest_multiple(min_size, RASTERIZER_BLOCK_SIZE)).release_value_but_fixme_should_propagate_errors();
    m_depth_buffer = adopt_own(*new DepthBuffer(m_render_target->size()));
}

void SoftwareRasterizer::clear_color(const FloatVector4& color)
{
    wait_for_all_threads();

    uint8_t r = static_cast<uint8_t>(clamp(color.x(), 0.0f, 1.0f) * 255);
    uint8_t g = static_cast<uint8_t>(clamp(color.y(), 0.0f, 1.0f) * 255);
    uint8_t b = static_cast<uint8_t>(clamp(color.z(), 0.0f, 1.0f) * 255);
    uint8_t a = static_cast<uint8_t>(clamp(color.w(), 0.0f, 1.0f) * 255);

    m_render_target->fill(Gfx::Color(r, g, b, a));
}

void SoftwareRasterizer::clear_depth(float depth)
{
    wait_for_all_threads();

    m_depth_buffer->clear(depth);
}

void SoftwareRasterizer::blit_to(Gfx::Bitmap& target)
{
    wait_for_all_threads();

    Gfx::Painter painter { target };
    painter.blit({ 0, 0 }, *m_render_target, m_render_target->rect(), 1.0f, false);
}

void SoftwareRasterizer::wait_for_all_threads() const
{
    // FIXME: Wait for all render threads to finish when multithreading is being implemented
}

void SoftwareRasterizer::set_options(const RasterizerOptions& options)
{
    wait_for_all_threads();

    m_options = options;

    // FIXME: Recreate or reinitialize render threads here when multithreading is being implemented
}

Gfx::RGBA32 SoftwareRasterizer::get_backbuffer_pixel(int x, int y)
{
    // FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
    if (x < 0 || y < 0 || x >= m_render_target->width() || y >= m_render_target->height())
        return 0;

    return m_render_target->scanline(y)[x];
}

float SoftwareRasterizer::get_depthbuffer_value(int x, int y)
{
    // FIXME: Reading individual pixels is very slow, rewrite this to transfer whole blocks
    if (x < 0 || y < 0 || x >= m_render_target->width() || y >= m_render_target->height())
        return 1.0f;

    return m_depth_buffer->scanline(y)[x];
}

}