summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibGL/SoftwareGLContext.cpp
blob: c6b54c40ef45e4b30b81057b6198ea24a0451b67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
/*
 * Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
 * Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@gmx.de>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include "SoftwareGLContext.h"
#include "GLStruct.h"
#include <AK/Assertions.h>
#include <AK/Debug.h>
#include <AK/Format.h>
#include <AK/QuickSort.h>
#include <AK/Vector.h>
#include <LibGfx/Vector4.h>
#include <math.h>

using AK::dbgln;

namespace GL {

static constexpr size_t NUM_CLIP_PLANES = 6;

static FloatVector4 clip_planes[] = {
    { -1, 0, 0, 1 }, // Left Plane
    { 1, 0, 0, 1 },  // Right Plane
    { 0, 1, 0, 1 },  // Top Plane
    { 0, -1, 0, 1 }, // Bottom plane
    { 0, 0, 1, 1 },  // Near Plane
    { 0, 0, -1, 1 }  // Far Plane
};

static FloatVector4 clip_plane_normals[] = {
    { 1, 0, 0, 1 },  // Left Plane
    { -1, 0, 0, 1 }, // Right Plane
    { 0, -1, 0, 1 }, // Top Plane
    { 0, 1, 0, 1 },  // Bottom plane
    { 0, 0, -1, 1 }, // Near Plane
    { 0, 0, 1, 1 }   // Far Plane
};

enum ClippingPlane {
    LEFT = 0,
    RIGHT = 1,
    TOP = 2,
    BOTTOM = 3,
    NEAR = 4,
    FAR = 5
};

// FIXME: We should set this up when we create the context!
static constexpr size_t MATRIX_STACK_LIMIT = 1024;

// FIXME: Change this to accept a vertex!
// Determines whether or not a vertex is inside the frustum for a given plane
static bool vert_inside_plane(const FloatVector4& vec, ClippingPlane plane)
{
    switch (plane) {
    case ClippingPlane::LEFT:
        return vec.x() > -vec.w();
    case ClippingPlane::RIGHT:
        return vec.x() < vec.w();
    case ClippingPlane::TOP:
        return vec.y() < vec.w();
    case ClippingPlane::BOTTOM:
        return vec.y() > -vec.w();
    case ClippingPlane::NEAR:
        return vec.z() > -vec.w();
    case ClippingPlane::FAR:
        return vec.z() < vec.w();
    }

    return false;
}

// FIXME: This needs to interpolate color/UV data as well!
static FloatVector4 clip_intersection_point(const FloatVector4& vec, const FloatVector4& prev_vec, ClippingPlane plane_index)
{
    // https://github.com/fogleman/fauxgl/blob/master/clipping.go#L20
    FloatVector4 u, w;
    FloatVector4 ret = prev_vec;
    FloatVector4 plane = clip_planes[plane_index];
    FloatVector4 plane_normal = clip_plane_normals[plane_index];

    u = vec;
    u -= prev_vec;
    w = prev_vec;
    w -= plane;
    float d = plane_normal.dot(u);
    float n = -plane_normal.dot(w);

    ret += (u * (n / d));
    return ret;
}

// https://groups.csail.mit.edu/graphics/classes/6.837/F04/lectures/07_Pipeline_II.pdf
// This is a really rough implementation of the Sutherland-Hodgman algorithm in clip-space
static void clip_triangle_against_frustum(Vector<FloatVector4>& in_vec)
{
    Vector<FloatVector4> clipped_polygon = in_vec; // in_vec = subjectPolygon, clipped_polygon = outputList
    for (size_t i = 0; i < NUM_CLIP_PLANES; i++)   // Test against each clip plane
    {
        ClippingPlane plane = static_cast<ClippingPlane>(i); // Hahaha, what the fuck
        in_vec = clipped_polygon;
        clipped_polygon.clear();

        // Prevent a crash from .at() undeflow
        if (in_vec.size() == 0)
            return;

        FloatVector4 prev_vec = in_vec.at(in_vec.size() - 1);

        for (size_t j = 0; j < in_vec.size(); j++) // Perform this for each vertex
        {
            const FloatVector4& vec = in_vec.at(j);
            if (vert_inside_plane(vec, plane)) {
                if (!vert_inside_plane(prev_vec, plane)) {
                    FloatVector4 intersect = clip_intersection_point(prev_vec, vec, plane);
                    clipped_polygon.append(intersect);
                }

                clipped_polygon.append(vec);
            } else if (vert_inside_plane(prev_vec, plane)) {
                FloatVector4 intersect = clip_intersection_point(prev_vec, vec, plane);
                clipped_polygon.append(intersect);
            }

            prev_vec = vec;
        }
    }
}

void SoftwareGLContext::gl_begin(GLenum mode)
{
    if (m_in_draw_state) {
        m_error = GL_INVALID_OPERATION;
        return;
    }

    if (mode < GL_TRIANGLES || mode > GL_POLYGON) {
        m_error = GL_INVALID_ENUM;
        return;
    }

    m_current_draw_mode = mode;
    m_in_draw_state = true; // Certain commands will now generate an error
    m_error = GL_NO_ERROR;
}

void SoftwareGLContext::gl_clear(GLbitfield mask)
{
    if (m_in_draw_state) {
        m_error = GL_INVALID_OPERATION;
        return;
    }

    if (mask & GL_COLOR_BUFFER_BIT) {
        uint8_t r = static_cast<uint8_t>(floor(m_clear_color.x() * 255.0f));
        uint8_t g = static_cast<uint8_t>(floor(m_clear_color.y() * 255.0f));
        uint8_t b = static_cast<uint8_t>(floor(m_clear_color.z() * 255.0f));

        uint64_t color = r << 16 | g << 8 | b;
        (void)(color);
        m_error = GL_NO_ERROR;
    } else {
        m_error = GL_INVALID_ENUM;
    }
}

void SoftwareGLContext::gl_clear_color(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)
{
    if (m_in_draw_state) {
        m_error = GL_INVALID_OPERATION;
        return;
    }

    m_clear_color = { red, green, blue, alpha };
    m_error = GL_NO_ERROR;
}

void SoftwareGLContext::gl_color(GLdouble r, GLdouble g, GLdouble b, GLdouble a)
{
    m_current_vertex_color = { (float)r, (float)g, (float)b, (float)a };
    m_error = GL_NO_ERROR;
}

void SoftwareGLContext::gl_end()
{
    // At this point, the user has effectively specified that they are done with defining the geometry
    // of what they want to draw. We now need to do a few things (https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview):
    //
    // 1.   Transform all of the vertices in the current vertex list into eye space by mulitplying the model-view matrix
    // 2.   Transform all of the vertices from eye space into clip space by multiplying by the projection matrix
    // 3.   If culling is enabled, we cull the desired faces (https://learnopengl.com/Advanced-OpenGL/Face-culling)
    // 4.   Each element of the vertex is then divided by w to bring the positions into NDC (Normalized Device Coordinates)
    // 5.   The vertices are sorted (for the rasteriser, how are we doing this? 3Dfx did this top to bottom in terms of vertex y co-ordinates)
    // 6.   The vertices are then sent off to the rasteriser and drawn to the screen

    // FIXME: Don't assume screen dimensions
    float scr_width = 640.0f;
    float scr_height = 480.0f;

    // Make sure we had a `glBegin` before this call...
    if (!m_in_draw_state) {
        m_error = GL_INVALID_OPERATION;
        return;
    }

    // Let's construct some triangles
    if (m_current_draw_mode == GL_TRIANGLES) {
        GLTriangle triangle;
        for (size_t i = 0; i < vertex_list.size(); i += 3) {
            triangle.vertices[0] = vertex_list.at(i);
            triangle.vertices[1] = vertex_list.at(i + 1);
            triangle.vertices[2] = vertex_list.at(i + 2);

            triangle_list.append(triangle);
        }
    } else if (m_current_draw_mode == GL_QUADS) {
        // We need to construct two triangles to form the quad
        GLTriangle triangle;
        VERIFY(vertex_list.size() % 4 == 0);
        for (size_t i = 0; i < vertex_list.size(); i += 4) {
            // Triangle 1
            triangle.vertices[0] = vertex_list.at(i);
            triangle.vertices[1] = vertex_list.at(i + 1);
            triangle.vertices[2] = vertex_list.at(i + 2);
            triangle_list.append(triangle);

            // Triangle 2
            triangle.vertices[0] = vertex_list.at(i + 2);
            triangle.vertices[1] = vertex_list.at(i + 3);
            triangle.vertices[2] = vertex_list.at(i);
            triangle_list.append(triangle);
        }
    } else if (m_current_draw_mode == GL_TRIANGLE_FAN) {
        GLTriangle triangle;
        triangle.vertices[0] = vertex_list.at(0); // Root vertex is always the vertex defined first

        for (size_t i = 1; i < vertex_list.size() - 1; i++) // This is technically `n-2` triangles. We start at index 1
        {
            triangle.vertices[1] = vertex_list.at(i);
            triangle.vertices[2] = vertex_list.at(i + 1);
            triangle_list.append(triangle);
        }
    } else if (m_current_draw_mode == GL_TRIANGLE_STRIP) {
        GLTriangle triangle;
        for (size_t i = 0; i < vertex_list.size() - 2; i++) {
            triangle.vertices[0] = vertex_list.at(i);
            triangle.vertices[1] = vertex_list.at(i + 1);
            triangle.vertices[2] = vertex_list.at(i + 2);
            triangle_list.append(triangle);
        }
    } else {
        m_error = GL_INVALID_ENUM;
        return;
    }

    // Now let's transform each triangle and send that to the GPU
    for (size_t i = 0; i < triangle_list.size(); i++) {
        GLTriangle& triangle = triangle_list.at(i);
        GLVertex& vertexa = triangle.vertices[0];
        GLVertex& vertexb = triangle.vertices[1];
        GLVertex& vertexc = triangle.vertices[2];

        FloatVector4 veca({ vertexa.x, vertexa.y, vertexa.z, 1.0f });
        FloatVector4 vecb({ vertexb.x, vertexb.y, vertexb.z, 1.0f });
        FloatVector4 vecc({ vertexc.x, vertexc.y, vertexc.z, 1.0f });

        // First multiply the vertex by the MODELVIEW matrix and then the PROJECTION matrix
        veca = m_model_view_matrix * veca;
        veca = m_projection_matrix * veca;

        vecb = m_model_view_matrix * vecb;
        vecb = m_projection_matrix * vecb;

        vecc = m_model_view_matrix * vecc;
        vecc = m_projection_matrix * vecc;

        // At this point, we're in clip space
        // Here's where we do the clipping. This is a really crude implementation of the
        // https://learnopengl.com/Getting-started/Coordinate-Systems
        // "Note that if only a part of a primitive e.g. a triangle is outside the clipping volume OpenGL
        // will reconstruct the triangle as one or more triangles to fit inside the clipping range. "
        //
        // ALL VERTICES ARE DEFINED IN A CLOCKWISE ORDER

        // Okay, let's do some face culling first

        Vector<FloatVector4> vecs;
        Vector<GLVertex> verts;

        vecs.append(veca);
        vecs.append(vecb);
        vecs.append(vecc);
        clip_triangle_against_frustum(vecs);

        // TODO: Copy color and UV information too!
        for (size_t vec_idx = 0; vec_idx < vecs.size(); vec_idx++) {
            FloatVector4& vec = vecs.at(vec_idx);
            GLVertex vertex;

            // Perform the perspective divide
            if (vec.w() != 0.0f) {
                vec.set_x(vec.x() / vec.w());
                vec.set_y(vec.y() / vec.w());
                vec.set_z(vec.z() / vec.w());
            }

            vertex.x = vec.x();
            vertex.y = vec.y();
            vertex.z = vec.z();
            vertex.w = vec.w();

            // FIXME: This is to suppress any -Wunused errors
            vertex.u = 0.0f;
            vertex.v = 0.0f;

            if (vec_idx == 0) {
                vertex.r = vertexa.r;
                vertex.g = vertexa.g;
                vertex.b = vertexa.b;
                vertex.a = vertexa.a;
            } else if (vec_idx == 1) {
                vertex.r = vertexb.r;
                vertex.g = vertexb.g;
                vertex.b = vertexb.b;
                vertex.a = vertexb.a;
            } else {
                vertex.r = vertexc.r;
                vertex.g = vertexc.g;
                vertex.b = vertexc.b;
                vertex.a = vertexc.a;
            }

            vertex.x = (vec.x() + 1.0f) * (scr_width / 2.0f) + 0.0f; // TODO: 0.0f should be something!?
            vertex.y = scr_height - ((vec.y() + 1.0f) * (scr_height / 2.0f) + 0.0f);
            vertex.z = vec.z();
            verts.append(vertex);
        }

        if (verts.size() == 0) {
            continue;
        } else if (verts.size() == 3) {
            GLTriangle tri;

            tri.vertices[0] = verts.at(0);
            tri.vertices[1] = verts.at(1);
            tri.vertices[2] = verts.at(2);
            processed_triangles.append(tri);
        } else if (verts.size() == 4) {
            GLTriangle tri1;
            GLTriangle tri2;

            tri1.vertices[0] = verts.at(0);
            tri1.vertices[1] = verts.at(1);
            tri1.vertices[2] = verts.at(2);
            processed_triangles.append(tri1);

            tri2.vertices[0] = verts.at(0);
            tri2.vertices[1] = verts.at(2);
            tri2.vertices[2] = verts.at(3);
            processed_triangles.append(tri2);
        }
    }

    for (size_t i = 0; i < processed_triangles.size(); i++) {
        Vector<GLVertex> sort_vert_list;
        GLTriangle& triangle = processed_triangles.at(i);

        // Now we sort the vertices by their y values. A is the vertex that has the least y value,
        // B is the middle and C is the bottom.
        // These are sorted in groups of 3
        sort_vert_list.append(triangle.vertices[0]);
        sort_vert_list.append(triangle.vertices[1]);
        sort_vert_list.append(triangle.vertices[2]);

        AK::quick_sort(sort_vert_list.begin(), sort_vert_list.end(), [](auto& a, auto& b) { return a.y < b.y; });

        triangle.vertices[0] = sort_vert_list.at(0);
        triangle.vertices[1] = sort_vert_list.at(1);
        triangle.vertices[2] = sort_vert_list.at(2);

        // Let's calculate the (signed) area of the triangle
        // https://cp-algorithms.com/geometry/oriented-triangle-area.html
        float dxAB = triangle.vertices[0].x - triangle.vertices[1].x; // A.x - B.x
        float dxBC = triangle.vertices[1].x - triangle.vertices[2].x; // B.X - C.x
        float dyAB = triangle.vertices[0].y - triangle.vertices[1].y;
        float dyBC = triangle.vertices[1].y - triangle.vertices[2].y;
        float area = (dxAB * dyBC) - (dxBC * dyAB);

        if (area == 0.0f)
            continue;

        int32_t vertexAx = triangle.vertices[0].x;
        int32_t vertexAy = triangle.vertices[0].y;
        int32_t vertexBx = triangle.vertices[1].x;
        int32_t vertexBy = triangle.vertices[1].y;
        int32_t vertexCx = triangle.vertices[2].x;
        int32_t vertexCy = triangle.vertices[2].y;
        (void)(vertexAx);
        (void)(vertexAy);
        (void)(vertexBx);
        (void)(vertexBy);
        (void)(vertexCx);
        (void)(vertexCy);
    }

    triangle_list.clear();
    processed_triangles.clear();
    vertex_list.clear();

    m_in_draw_state = false;
    m_error = GL_NO_ERROR;
}

void SoftwareGLContext::gl_frustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near_val, GLdouble far_val)
{
    if (m_in_draw_state) {
        m_error = GL_INVALID_OPERATION;
        return;
    }

    // Let's do some math!
    // FIXME: Are we losing too much precision by doing this?
    float a = static_cast<float>((right + left) / (right - left));
    float b = static_cast<float>((top + bottom) / (top - bottom));
    float c = static_cast<float>(-((far_val + near_val) / (far_val - near_val)));
    float d = static_cast<float>(-((2 * (far_val * near_val)) / (far_val - near_val)));

    FloatMatrix4x4 frustum {
        ((2 * (float)near_val) / ((float)right - (float)left)), 0, a, 0,
        0, ((2 * (float)near_val) / ((float)top - (float)bottom)), b, 0,
        0, 0, c, d,
        0, 0, -1, 0
    };

    if (m_current_matrix_mode == GL_PROJECTION) {
        m_projection_matrix = m_projection_matrix * frustum;
    } else if (m_current_matrix_mode == GL_MODELVIEW) {
        dbgln_if(GL_DEBUG, "glFrustum(): frustum created with curr_matrix_mode == GL_MODELVIEW!!!");
        m_projection_matrix = m_model_view_matrix * frustum;
    }

    m_error = GL_NO_ERROR;
}

GLenum SoftwareGLContext::gl_get_error()
{
    if (m_in_draw_state) {
        return GL_INVALID_OPERATION;
    }

    return m_error;
}

GLubyte* SoftwareGLContext::gl_get_string(GLenum name)
{
    if (m_in_draw_state) {
        m_error = GL_INVALID_OPERATION;
        return nullptr;
    }

    switch (name) {
    case GL_VENDOR:
        return reinterpret_cast<GLubyte*>(const_cast<char*>("The SerenityOS Developers"));
    case GL_RENDERER:
        return reinterpret_cast<GLubyte*>(const_cast<char*>("SerenityOS OpenGL"));
    case GL_VERSION:
        return reinterpret_cast<GLubyte*>(const_cast<char*>("OpenGL 1.2 SerenityOS"));
    default:
        dbgln_if(GL_DEBUG, "glGetString(): Unknown enum name!");
        break;
    }

    m_error = GL_INVALID_ENUM;
    return nullptr;
}

void SoftwareGLContext::gl_load_identity()
{
    if (m_in_draw_state) {
        m_error = GL_INVALID_OPERATION;
        return;
    }

    if (m_current_matrix_mode == GL_PROJECTION)
        m_projection_matrix = FloatMatrix4x4::identity();
    else if (m_current_matrix_mode == GL_MODELVIEW)
        m_model_view_matrix = FloatMatrix4x4::identity();
    else
        VERIFY_NOT_REACHED();

    m_error = GL_NO_ERROR;
}

void SoftwareGLContext::gl_matrix_mode(GLenum mode)
{
    if (m_in_draw_state) {
        m_error = GL_INVALID_OPERATION;
        return;
    }

    if (mode < GL_MODELVIEW || mode > GL_PROJECTION) {
        m_error = GL_INVALID_ENUM;
        return;
    }

    m_current_matrix_mode = mode;
    m_error = GL_NO_ERROR;
}

void SoftwareGLContext::gl_push_matrix()
{
    if (m_in_draw_state) {
        m_error = GL_INVALID_OPERATION;
        return;
    }

    dbgln_if(GL_DEBUG, "glPushMatrix(): Pushing matrix to the matrix stack (matrix_mode {})", m_current_matrix_mode);

    switch (m_current_matrix_mode) {
    case GL_PROJECTION:
        if (m_projection_matrix_stack.size() >= MATRIX_STACK_LIMIT) {
            m_error = GL_STACK_OVERFLOW;
            return;
        }
        m_projection_matrix_stack.append(m_projection_matrix);
        break;
    case GL_MODELVIEW:
        if (m_model_view_matrix_stack.size() >= MATRIX_STACK_LIMIT) {
            m_error = GL_STACK_OVERFLOW;
            return;
        }
        m_model_view_matrix_stack.append(m_model_view_matrix);
        break;
    default:
        dbgln_if(GL_DEBUG, "glPushMatrix(): Attempt to push matrix with invalid matrix mode {})", m_current_matrix_mode);
        return;
    }

    m_error = GL_NO_ERROR;
}

void SoftwareGLContext::gl_pop_matrix()
{
    if (m_in_draw_state) {
        m_error = GL_INVALID_OPERATION;
        return;
    }

    dbgln_if(GL_DEBUG, "glPopMatrix(): Popping matrix from matrix stack (matrix_mode = {})", m_current_matrix_mode);

    // FIXME: Make sure stack::top() doesn't cause any  nasty issues if it's empty (that could result in a lockup/hang)
    switch (m_current_matrix_mode) {
    case GL_PROJECTION:
        if (m_projection_matrix_stack.size() == 0) {
            m_error = GL_STACK_UNDERFLOW;
            return;
        }
        m_projection_matrix = m_projection_matrix_stack.take_last();
        break;
    case GL_MODELVIEW:
        if (m_model_view_matrix_stack.size() == 0) {
            m_error = GL_STACK_UNDERFLOW;
            return;
        }
        m_model_view_matrix = m_model_view_matrix_stack.take_last();
        break;
    default:
        dbgln_if(GL_DEBUG, "glPopMatrix(): Attempt to pop matrix with invalid matrix mode, {}", m_current_matrix_mode);
        return;
    }

    m_error = GL_NO_ERROR;
}

void SoftwareGLContext::gl_rotate(GLdouble angle, GLdouble x, GLdouble y, GLdouble z)
{
    if (m_in_draw_state) {
        m_error = GL_INVALID_OPERATION;
        return;
    }

    FloatVector3 axis = { (float)x, (float)y, (float)z };
    axis.normalize();
    auto rotation_mat = FloatMatrix4x4::rotate(axis, angle);

    if (m_current_matrix_mode == GL_MODELVIEW)
        m_model_view_matrix = m_model_view_matrix * rotation_mat;
    else if (m_current_matrix_mode == GL_PROJECTION)
        m_projection_matrix = m_projection_matrix * rotation_mat;

    m_error = GL_NO_ERROR;
}

void SoftwareGLContext::gl_translate(GLdouble x, GLdouble y, GLdouble z)
{
    if (m_in_draw_state) {
        m_error = GL_INVALID_OPERATION;
        return;
    }

    if (m_current_matrix_mode == GL_MODELVIEW) {
        m_model_view_matrix = m_model_view_matrix * FloatMatrix4x4::translate({ (float)x, (float)y, (float)z });
    } else if (m_current_matrix_mode == GL_PROJECTION) {
        m_projection_matrix = m_projection_matrix * FloatMatrix4x4::translate({ (float)x, (float)y, (float)z });
    }

    m_error = GL_NO_ERROR;
}

void SoftwareGLContext::gl_vertex(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
    GLVertex vertex;

    vertex.x = x;
    vertex.y = y;
    vertex.z = z;
    vertex.w = w;
    vertex.r = m_current_vertex_color.x();
    vertex.g = m_current_vertex_color.y();
    vertex.b = m_current_vertex_color.z();
    vertex.a = m_current_vertex_color.w();

    // FIXME: This is to suppress any -Wunused errors
    vertex.w = 0.0f;
    vertex.u = 0.0f;
    vertex.v = 0.0f;

    vertex_list.append(vertex);
    m_error = GL_NO_ERROR;
}

void SoftwareGLContext::gl_viewport(GLint x, GLint y, GLsizei width, GLsizei height)
{
    if (m_in_draw_state) {
        m_error = GL_INVALID_OPERATION;
        return;
    }

    (void)(x);
    (void)(y);
    (void)(width);
    (void)(height);
    m_error = GL_NO_ERROR;
}

}