1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
/*
* Copyright (c) 2021, kleines Filmröllchen <filmroellchen@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/FixedArray.h>
#include <AK/NoAllocationGuard.h>
#include <AK/NonnullRefPtr.h>
#include <AK/Optional.h>
#include <AK/StdLibExtras.h>
#include <AK/TypedTransfer.h>
#include <AK/Types.h>
#include <LibDSP/Music.h>
#include <LibDSP/Processor.h>
#include <LibDSP/Track.h>
namespace DSP {
bool Track::add_processor(NonnullRefPtr<Processor> new_processor)
{
m_processor_chain.append(move(new_processor));
if (!check_processor_chain_valid()) {
(void)m_processor_chain.take_last();
return false;
}
return true;
}
bool Track::check_processor_chain_valid_with_initial_type(SignalType initial_type) const
{
Processor const* previous_processor = nullptr;
for (auto& processor : m_processor_chain) {
// The first processor must have the given initial signal type as input.
if (previous_processor == nullptr) {
if (processor.input_type() != initial_type)
return false;
} else if (previous_processor->output_type() != processor.input_type())
return false;
previous_processor = &processor;
}
return true;
}
NonnullRefPtr<Synthesizers::Classic> Track::synth()
{
return static_ptr_cast<Synthesizers::Classic>(m_processor_chain.ptr_at(0));
}
NonnullRefPtr<Effects::Delay> Track::delay()
{
return static_ptr_cast<Effects::Delay>(m_processor_chain.ptr_at(1));
}
bool AudioTrack::check_processor_chain_valid() const
{
return check_processor_chain_valid_with_initial_type(SignalType::Sample);
}
bool NoteTrack::check_processor_chain_valid() const
{
return check_processor_chain_valid_with_initial_type(SignalType::Note);
}
ErrorOr<void> Track::resize_internal_buffers_to(size_t buffer_size)
{
m_secondary_sample_buffer = TRY(FixedArray<Sample>::try_create(buffer_size));
return {};
}
void Track::current_signal(FixedArray<Sample>& output_signal)
{
// This is real-time code. We must NEVER EVER EVER allocate.
NoAllocationGuard guard;
VERIFY(m_secondary_sample_buffer.type() == SignalType::Sample);
VERIFY(output_signal.size() == m_secondary_sample_buffer.get<FixedArray<Sample>>().size());
compute_current_clips_signal();
Signal* source_signal = &m_current_signal;
// This provides an audio buffer of the right size. It is not allocated here, but whenever we are informed about a buffer size change.
Signal* target_signal = &m_secondary_sample_buffer;
for (auto& processor : m_processor_chain) {
// Depending on what the processor needs to have as output, we need to place either a pre-allocated note hash map or a pre-allocated sample buffer in the target signal.
if (processor.output_type() == SignalType::Note)
target_signal = &m_secondary_note_buffer;
else
target_signal = &m_secondary_sample_buffer;
processor.process(*source_signal, *target_signal);
swap(source_signal, target_signal);
}
VERIFY(source_signal->type() == SignalType::Sample);
VERIFY(output_signal.size() == source_signal->get<FixedArray<Sample>>().size());
// The last processor is the fixed mastering processor. This can write directly to the output data. We also just trust this processor that it does the right thing :^)
m_track_mastering->process_to_fixed_array(*source_signal, output_signal);
}
void NoteTrack::compute_current_clips_signal()
{
// FIXME: Handle looping properly
u32 start_time = m_transport->time();
VERIFY(m_secondary_sample_buffer.type() == SignalType::Sample);
size_t sample_count = m_secondary_sample_buffer.get<FixedArray<Sample>>().size();
u32 end_time = start_time + static_cast<u32>(sample_count);
// Find the currently playing clips.
// We can't handle more than 32 playing clips at a time, but that is a ridiculous number.
Array<RefPtr<NoteClip>, 32> playing_clips;
size_t playing_clips_index = 0;
for (auto& clip : m_clips) {
// A clip is playing if its start time or end time fall in the current time range.
// Or, if they both enclose the current time range.
if ((clip.start() <= start_time && clip.end() >= end_time)
|| (clip.start() >= start_time && clip.start() < end_time)
|| (clip.end() > start_time && clip.end() <= end_time)) {
VERIFY(playing_clips_index < playing_clips.size());
playing_clips[playing_clips_index++] = clip;
}
}
auto& current_notes = m_current_signal.get<RollNotes>();
m_current_signal.get<RollNotes>().fill({});
if (playing_clips_index == 0)
return;
for (auto const& playing_clip : playing_clips) {
if (playing_clip.is_null())
break;
for (auto const& note : playing_clip->notes()) {
if (note.is_playing_during(start_time, end_time))
current_notes[note.pitch] = note;
}
}
for (auto const& keyboard_note : m_keyboard->notes()) {
if (!keyboard_note.has_value() || !keyboard_note->is_playing_during(start_time, end_time))
continue;
// Always overwrite roll notes with keyboard notes.
current_notes[keyboard_note->pitch] = keyboard_note;
}
}
void AudioTrack::compute_current_clips_signal()
{
// This is quite involved as we need to look at multiple clips and take looping into account.
TODO();
}
void NoteTrack::set_note(RollNote note)
{
for (auto& clip : m_clips) {
if (clip.start() <= note.on_sample && clip.end() >= note.on_sample)
clip.set_note(note);
}
}
void NoteTrack::remove_note(RollNote note)
{
for (auto& clip : m_clips)
clip.remove_note(note);
}
void NoteTrack::add_clip(u32 start_time, u32 end_time)
{
m_clips.append(AK::make_ref_counted<NoteClip>(start_time, end_time));
}
}
|