blob: 8083333f968e695a630f65d411a3b13bd6351744 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
/*
* Copyright (c) 2021, Cesar Torres <shortanemoia@protonmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "FFT.h"
#include <AK/Complex.h>
#include <AK/Math.h>
namespace LibDSP {
// This function uses the input vector as output too. therefore, if you wish to
// leave it intact, pass a copy to this function
//
// The sampling frequency must be more than twice the frequency to resolve.
// The sample window must be at least large enough to reflect the periodicity
// of the smallest frequency to be resolved.
//
// For example, to resolve a 10 KHz and a 2 Hz sine waves we need at least
// a samplerate of 20 KHz and a window of 0.5 seconds
//
// If invert is true, this function computes the inverse discrete fourier transform.
//
// The data vector must be a power of 2
// Adapted from https://cp-algorithms.com/algebra/fft.html
void fft(Vector<Complex<double>>& sample_data, bool invert)
{
int n = sample_data.size();
auto data = sample_data.data();
for (int i = 1, j = 0; i < n; i++) {
int bit = n >> 1;
for (; j & bit; bit >>= 1)
j ^= bit;
j ^= bit;
if (i < j)
swap(data[i], data[j]);
}
for (int len = 2; len <= n; len <<= 1) {
double ang = 2 * AK::Pi<double> / len * (invert ? -1 : 1);
Complex<double> wlen(AK::cos(ang), AK::sin(ang));
for (int i = 0; i < n; i += len) {
Complex<double> w = { 1., 0. };
for (int j = 0; j < len / 2; j++) {
Complex<double> u = data[i + j], v = data[i + j + len / 2] * w;
data[i + j] = u + v;
data[i + j + len / 2] = u - v;
w *= wlen;
}
}
}
if (invert) {
for (int i = 0; i < n; i++)
data[i] /= n;
}
}
}
|