1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
/*
* Copyright (c) 2020, Ali Mohammad Pur <mpfard@serenityos.org>
* Copyright (c) 2022, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Span.h>
#include <LibCrypto/BigInt/UnsignedBigInteger.h>
#include <LibCrypto/NumberTheory/ModularFunctions.h>
#include <LibCrypto/PK/Code/EMSA_PSS.h>
#include <LibCrypto/PK/PK.h>
namespace Crypto {
namespace PK {
template<typename Integer = UnsignedBigInteger>
class RSAPublicKey {
public:
RSAPublicKey(Integer n, Integer e)
: m_modulus(move(n))
, m_public_exponent(move(e))
, m_length(m_modulus.trimmed_length() * sizeof(u32))
{
}
RSAPublicKey()
: m_modulus(0)
, m_public_exponent(0)
{
}
Integer const& modulus() const { return m_modulus; }
Integer const& public_exponent() const { return m_public_exponent; }
size_t length() const { return m_length; }
void set_length(size_t length) { m_length = length; }
void set(Integer n, Integer e)
{
m_modulus = move(n);
m_public_exponent = move(e);
m_length = (m_modulus.trimmed_length() * sizeof(u32));
}
private:
Integer m_modulus;
Integer m_public_exponent;
size_t m_length { 0 };
};
template<typename Integer = UnsignedBigInteger>
class RSAPrivateKey {
public:
RSAPrivateKey(Integer n, Integer d, Integer e)
: m_modulus(move(n))
, m_private_exponent(move(d))
, m_public_exponent(move(e))
, m_length(m_modulus.trimmed_length() * sizeof(u32))
{
}
RSAPrivateKey() = default;
Integer const& modulus() const { return m_modulus; }
Integer const& private_exponent() const { return m_private_exponent; }
Integer const& public_exponent() const { return m_public_exponent; }
size_t length() const { return m_length; }
void set_length(size_t length) { m_length = length; }
void set(Integer n, Integer d, Integer e)
{
m_modulus = move(n);
m_private_exponent = move(d);
m_public_exponent = move(e);
m_length = m_modulus.trimmed_length() * sizeof(u32);
}
private:
Integer m_modulus;
Integer m_private_exponent;
Integer m_public_exponent;
size_t m_length { 0 };
};
template<typename PubKey, typename PrivKey>
struct RSAKeyPair {
PubKey public_key;
PrivKey private_key;
};
using IntegerType = UnsignedBigInteger;
class RSA : public PKSystem<RSAPrivateKey<IntegerType>, RSAPublicKey<IntegerType>> {
template<typename T>
friend class RSA_EMSA_PSS;
public:
using KeyPairType = RSAKeyPair<PublicKeyType, PrivateKeyType>;
static KeyPairType parse_rsa_key(ReadonlyBytes der);
static KeyPairType generate_key_pair(size_t bits = 256)
{
IntegerType e { 65537 }; // :P
IntegerType p, q;
IntegerType lambda;
do {
p = NumberTheory::random_big_prime(bits / 2);
q = NumberTheory::random_big_prime(bits / 2);
lambda = NumberTheory::LCM(p.minus(1), q.minus(1));
dbgln("checking combination p={}, q={}, lambda={}", p, q, lambda.length());
} while (!(NumberTheory::GCD(e, lambda) == 1));
auto n = p.multiplied_by(q);
auto d = NumberTheory::ModularInverse(e, lambda);
dbgln("Your keys are Pub(n={}, e={}) and Priv(n={}, d={})", n, e, n, d);
RSAKeyPair<PublicKeyType, PrivateKeyType> keys {
{ n, e },
{ n, d, e }
};
keys.public_key.set_length(bits / 2 / 8);
keys.private_key.set_length(bits / 2 / 8);
return keys;
}
RSA(IntegerType n, IntegerType d, IntegerType e)
{
m_public_key.set(n, e);
m_private_key.set(n, d, e);
}
RSA(PublicKeyType& pubkey, PrivateKeyType& privkey)
: PKSystem<RSAPrivateKey<IntegerType>, RSAPublicKey<IntegerType>>(pubkey, privkey)
{
}
RSA(ByteBuffer const& publicKeyPEM, ByteBuffer const& privateKeyPEM)
{
import_public_key(publicKeyPEM);
import_private_key(privateKeyPEM);
}
RSA(StringView privKeyPEM)
{
import_private_key(privKeyPEM.bytes());
m_public_key.set(m_private_key.modulus(), m_private_key.public_exponent());
}
// create our own keys
RSA()
{
auto pair = generate_key_pair();
m_public_key = pair.public_key;
m_private_key = pair.private_key;
}
virtual void encrypt(ReadonlyBytes in, Bytes& out) override;
virtual void decrypt(ReadonlyBytes in, Bytes& out) override;
virtual void sign(ReadonlyBytes in, Bytes& out) override;
virtual void verify(ReadonlyBytes in, Bytes& out) override;
#ifndef KERNEL
virtual String class_name() const override
{
return "RSA";
}
#endif
virtual size_t output_size() const override
{
return m_public_key.length();
}
void import_public_key(ReadonlyBytes, bool pem = true);
void import_private_key(ReadonlyBytes, bool pem = true);
PrivateKeyType const& private_key() const { return m_private_key; }
PublicKeyType const& public_key() const { return m_public_key; }
};
template<typename HashFunction>
class RSA_EMSA_PSS {
public:
RSA_EMSA_PSS(RSA& rsa)
: m_rsa(rsa)
{
}
void sign(ReadonlyBytes in, Bytes& out);
VerificationConsistency verify(ReadonlyBytes in);
private:
EMSA_PSS<HashFunction, HashFunction::DigestSize> m_emsa_pss;
RSA m_rsa;
};
class RSA_PKCS1_EME : public RSA {
public:
// forward all constructions to RSA
template<typename... Args>
RSA_PKCS1_EME(Args... args)
: RSA(args...)
{
}
~RSA_PKCS1_EME() = default;
virtual void encrypt(ReadonlyBytes in, Bytes& out) override;
virtual void decrypt(ReadonlyBytes in, Bytes& out) override;
virtual void sign(ReadonlyBytes, Bytes&) override;
virtual void verify(ReadonlyBytes, Bytes&) override;
#ifndef KERNEL
virtual String class_name() const override
{
return "RSA_PKCS1-EME";
}
#endif
virtual size_t output_size() const override
{
return m_public_key.length();
}
};
}
}
|