1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
/*
* Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Random.h>
#include <LibCrypto/PK/Code/Code.h>
static constexpr u8 zeros[] { 0, 0, 0, 0, 0, 0, 0, 0 };
namespace Crypto {
namespace PK {
template<typename HashFunction, size_t SaltSize>
class EMSA_PSS : public Code<HashFunction> {
public:
template<typename... Args>
EMSA_PSS(Args... args)
: Code<HashFunction>(args...)
{
m_buffer = Bytes { m_data_buffer, sizeof(m_data_buffer) };
}
static constexpr auto SaltLength = SaltSize;
virtual void encode(ReadonlyBytes in, ByteBuffer& out, size_t em_bits) override
{
// FIXME: we're supposed to check if in.size() > HashFunction::input_limitation
// however, all of our current hash functions can hash unlimited blocks
auto& hash_fn = this->hasher();
hash_fn.update(in);
auto message_hash = hash_fn.digest();
auto hash_length = hash_fn.DigestSize;
auto em_length = (em_bits + 7) / 8;
u8 salt[SaltLength];
fill_with_random(salt, SaltLength);
if (em_length < hash_length + SaltLength + 2) {
dbgln("Ooops...encoding error");
return;
}
m_buffer.overwrite(0, zeros, 8);
m_buffer.overwrite(8, message_hash.data, HashFunction::DigestSize);
m_buffer.overwrite(8 + HashFunction::DigestSize, salt, SaltLength);
hash_fn.update(m_buffer);
auto hash = hash_fn.digest();
u8 DB_data[em_length - HashFunction::DigestSize - 1];
auto DB = Bytes { DB_data, em_length - HashFunction::DigestSize - 1 };
auto DB_offset = 0;
for (size_t i = 0; i < em_length - SaltLength - HashFunction::DigestSize - 2; ++i)
DB[DB_offset++] = 0;
DB[DB_offset++] = 0x01;
DB.overwrite(DB_offset, salt, SaltLength);
auto mask_length = em_length - HashFunction::DigestSize - 1;
u8 DB_mask[mask_length];
auto DB_mask_buffer = Bytes { DB_mask, mask_length };
// FIXME: we should probably allow reading from u8*
MGF1(ReadonlyBytes { hash.data, HashFunction::DigestSize }, mask_length, DB_mask_buffer);
for (size_t i = 0; i < DB.size(); ++i)
DB_data[i] ^= DB_mask[i];
auto count = (8 - (em_length * 8 - em_bits));
DB_data[0] &= (0xff >> count) << count;
out.overwrite(0, DB.data(), DB.size());
out.overwrite(DB.size(), hash.data, hash_fn.DigestSize);
out[DB.size() + hash_fn.DigestSize] = 0xbc;
}
virtual VerificationConsistency verify(ReadonlyBytes msg, ReadonlyBytes emsg, size_t em_bits) override
{
auto& hash_fn = this->hasher();
hash_fn.update(msg);
auto message_hash = hash_fn.digest();
if (emsg.size() < HashFunction::DigestSize + SaltLength + 2)
return VerificationConsistency::Inconsistent;
if (emsg[emsg.size() - 1] != 0xbc)
return VerificationConsistency::Inconsistent;
auto mask_length = emsg.size() - HashFunction::DigestSize - 1;
auto masked_DB = emsg.slice(0, mask_length);
auto H = emsg.slice(mask_length, HashFunction::DigestSize);
auto length_to_check = 8 * emsg.size() - em_bits;
auto octet = masked_DB[0];
for (size_t i = 0; i < length_to_check; ++i)
if ((octet >> (8 - i)) & 0x01)
return VerificationConsistency::Inconsistent;
u8 DB_mask[mask_length];
auto DB_mask_buffer = Bytes { DB_mask, mask_length };
MGF1(H, mask_length, DB_mask_buffer);
u8 DB[mask_length];
for (size_t i = 0; i < mask_length; ++i)
DB[i] = masked_DB[i] ^ DB_mask[i];
DB[0] &= 0xff >> (8 - length_to_check);
auto check_octets = emsg.size() - HashFunction::DigestSize - SaltLength - 2;
for (size_t i = 0; i < check_octets; ++i) {
if (DB[i])
return VerificationConsistency::Inconsistent;
}
if (DB[check_octets + 1] != 0x01)
return VerificationConsistency::Inconsistent;
auto* salt = DB + mask_length - SaltLength;
u8 m_prime[8 + HashFunction::DigestSize + SaltLength] { 0, 0, 0, 0, 0, 0, 0, 0 };
auto m_prime_buffer = Bytes { m_prime, sizeof(m_prime) };
m_prime_buffer.overwrite(8, message_hash.data, HashFunction::DigestSize);
m_prime_buffer.overwrite(8 + HashFunction::DigestSize, salt, SaltLength);
hash_fn.update(m_prime_buffer);
auto H_prime = hash_fn.digest();
if (__builtin_memcmp(message_hash.data, H_prime.data, HashFunction::DigestSize))
return VerificationConsistency::Inconsistent;
return VerificationConsistency::Consistent;
}
void MGF1(ReadonlyBytes seed, size_t length, Bytes out)
{
auto& hash_fn = this->hasher();
ByteBuffer T = ByteBuffer::create_zeroed(0);
for (size_t counter = 0; counter < length / HashFunction::DigestSize - 1; ++counter) {
hash_fn.update(seed);
hash_fn.update((u8*)&counter, 4);
T.append(hash_fn.digest().data, HashFunction::DigestSize);
}
out.overwrite(0, T.data(), length);
}
private:
u8 m_data_buffer[8 + HashFunction::DigestSize + SaltLength];
Bytes m_buffer;
};
}
}
|