1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
/*
* Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Random.h>
#include <LibCrypto/PK/Code/Code.h>
static constexpr u8 zeros[] { 0, 0, 0, 0, 0, 0, 0, 0 };
namespace Crypto {
namespace PK {
template<typename HashFunction, size_t SaltSize>
class EMSA_PSS : public Code<HashFunction> {
public:
template<typename... Args>
EMSA_PSS(Args... args)
: Code<HashFunction>(args...)
{
m_buffer = Bytes { m_data_buffer, sizeof(m_data_buffer) };
}
static constexpr auto SaltLength = SaltSize;
virtual void encode(ReadonlyBytes in, ByteBuffer& out, size_t em_bits) override
{
// FIXME: we're supposed to check if in.size() > HashFunction::input_limitation
// however, all of our current hash functions can hash unlimited blocks
auto& hash_fn = this->hasher();
hash_fn.update(in);
auto message_hash = hash_fn.digest();
auto hash_length = hash_fn.DigestSize;
auto em_length = (em_bits + 7) / 8;
u8 salt[SaltLength];
fill_with_random(salt, SaltLength);
if (em_length < hash_length + SaltLength + 2) {
dbgln("Ooops...encoding error");
return;
}
m_buffer.overwrite(0, zeros, 8);
m_buffer.overwrite(8, message_hash.data, HashFunction::DigestSize);
m_buffer.overwrite(8 + HashFunction::DigestSize, salt, SaltLength);
hash_fn.update(m_buffer);
auto hash = hash_fn.digest();
u8 DB_data[em_length - HashFunction::DigestSize - 1];
auto DB = Bytes { DB_data, em_length - HashFunction::DigestSize - 1 };
auto DB_offset = 0;
for (size_t i = 0; i < em_length - SaltLength - HashFunction::DigestSize - 2; ++i)
DB[DB_offset++] = 0;
DB[DB_offset++] = 0x01;
DB.overwrite(DB_offset, salt, SaltLength);
auto mask_length = em_length - HashFunction::DigestSize - 1;
u8 DB_mask[mask_length];
auto DB_mask_buffer = Bytes { DB_mask, mask_length };
// FIXME: we should probably allow reading from u8*
MGF1(ReadonlyBytes { hash.data, HashFunction::DigestSize }, mask_length, DB_mask_buffer);
for (size_t i = 0; i < DB.size(); ++i)
DB_data[i] ^= DB_mask[i];
auto count = (8 - (em_length * 8 - em_bits));
DB_data[0] &= (0xff >> count) << count;
out.overwrite(0, DB.data(), DB.size());
out.overwrite(DB.size(), hash.data, hash_fn.DigestSize);
out[DB.size() + hash_fn.DigestSize] = 0xbc;
}
virtual VerificationConsistency verify(ReadonlyBytes msg, ReadonlyBytes emsg, size_t em_bits) override
{
auto& hash_fn = this->hasher();
hash_fn.update(msg);
auto message_hash = hash_fn.digest();
if (emsg.size() < HashFunction::DigestSize + SaltLength + 2)
return VerificationConsistency::Inconsistent;
if (emsg[emsg.size() - 1] != 0xbc)
return VerificationConsistency::Inconsistent;
auto mask_length = emsg.size() - HashFunction::DigestSize - 1;
auto masked_DB = emsg.slice(0, mask_length);
auto H = emsg.slice(mask_length, HashFunction::DigestSize);
auto length_to_check = 8 * emsg.size() - em_bits;
auto octet = masked_DB[0];
for (size_t i = 0; i < length_to_check; ++i)
if ((octet >> (8 - i)) & 0x01)
return VerificationConsistency::Inconsistent;
u8 DB_mask[mask_length];
auto DB_mask_buffer = Bytes { DB_mask, mask_length };
MGF1(H, mask_length, DB_mask_buffer);
u8 DB[mask_length];
for (size_t i = 0; i < mask_length; ++i)
DB[i] = masked_DB[i] ^ DB_mask[i];
DB[0] &= 0xff >> (8 - length_to_check);
auto check_octets = emsg.size() - HashFunction::DigestSize - SaltLength - 2;
for (size_t i = 0; i < check_octets; ++i) {
if (DB[i])
return VerificationConsistency::Inconsistent;
}
if (DB[check_octets + 1] != 0x01)
return VerificationConsistency::Inconsistent;
auto* salt = DB + mask_length - SaltLength;
u8 m_prime[8 + HashFunction::DigestSize + SaltLength] { 0, 0, 0, 0, 0, 0, 0, 0 };
auto m_prime_buffer = Bytes { m_prime, sizeof(m_prime) };
m_prime_buffer.overwrite(8, message_hash.data, HashFunction::DigestSize);
m_prime_buffer.overwrite(8 + HashFunction::DigestSize, salt, SaltLength);
hash_fn.update(m_prime_buffer);
auto H_prime = hash_fn.digest();
if (__builtin_memcmp(message_hash.data, H_prime.data, HashFunction::DigestSize))
return VerificationConsistency::Inconsistent;
return VerificationConsistency::Consistent;
}
void MGF1(ReadonlyBytes seed, size_t length, Bytes out)
{
auto& hash_fn = this->hasher();
ByteBuffer T = ByteBuffer::create_zeroed(0);
for (size_t counter = 0; counter < length / HashFunction::DigestSize - 1; ++counter) {
hash_fn.update(seed);
hash_fn.update((u8*)&counter, 4);
T.append(hash_fn.digest().data, HashFunction::DigestSize);
}
out.overwrite(0, T.data(), length);
}
private:
u8 m_data_buffer[8 + HashFunction::DigestSize + SaltLength];
Bytes m_buffer;
};
}
}
|