summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibCrypto/NumberTheory/ModularFunctions.cpp
blob: e9a29c46f164419bd378d67a9dd49a058478b4ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/*
 * Copyright (c) 2020, Ali Mohammad Pur <ali.mpfard@gmail.com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <AK/Debug.h>
#include <LibCrypto/NumberTheory/ModularFunctions.h>

namespace Crypto {
namespace NumberTheory {

UnsignedBigInteger ModularInverse(const UnsignedBigInteger& a_, const UnsignedBigInteger& b)
{
    if (b == 1)
        return { 1 };

    UnsignedBigInteger one { 1 };
    UnsignedBigInteger temp_1;
    UnsignedBigInteger temp_2;
    UnsignedBigInteger temp_3;
    UnsignedBigInteger temp_4;
    UnsignedBigInteger temp_plus;
    UnsignedBigInteger temp_minus;
    UnsignedBigInteger temp_quotient;
    UnsignedBigInteger temp_remainder;
    UnsignedBigInteger d;

    auto a = a_;
    auto u = a;
    if (a.words()[0] % 2 == 0) {
        // u += b
        UnsignedBigInteger::add_without_allocation(u, b, temp_plus);
        u.set_to(temp_plus);
    }

    auto v = b;
    UnsignedBigInteger x { 0 };

    // d = b - 1
    UnsignedBigInteger::subtract_without_allocation(b, one, d);

    while (!(v == 1)) {
        while (v < u) {
            // u -= v
            UnsignedBigInteger::subtract_without_allocation(u, v, temp_minus);
            u.set_to(temp_minus);

            // d += x
            UnsignedBigInteger::add_without_allocation(d, x, temp_plus);
            d.set_to(temp_plus);

            while (u.words()[0] % 2 == 0) {
                if (d.words()[0] % 2 == 1) {
                    // d += b
                    UnsignedBigInteger::add_without_allocation(d, b, temp_plus);
                    d.set_to(temp_plus);
                }

                // u /= 2
                UnsignedBigInteger::divide_u16_without_allocation(u, 2, temp_quotient, temp_remainder);
                u.set_to(temp_quotient);

                // d /= 2
                UnsignedBigInteger::divide_u16_without_allocation(d, 2, temp_quotient, temp_remainder);
                d.set_to(temp_quotient);
            }
        }

        // v -= u
        UnsignedBigInteger::subtract_without_allocation(v, u, temp_minus);
        v.set_to(temp_minus);

        // x += d
        UnsignedBigInteger::add_without_allocation(x, d, temp_plus);
        x.set_to(temp_plus);

        while (v.words()[0] % 2 == 0) {
            if (x.words()[0] % 2 == 1) {
                // x += b
                UnsignedBigInteger::add_without_allocation(x, b, temp_plus);
                x.set_to(temp_plus);
            }

            // v /= 2
            UnsignedBigInteger::divide_u16_without_allocation(v, 2, temp_quotient, temp_remainder);
            v.set_to(temp_quotient);

            // x /= 2
            UnsignedBigInteger::divide_u16_without_allocation(x, 2, temp_quotient, temp_remainder);
            x.set_to(temp_quotient);
        }
    }

    // x % b
    UnsignedBigInteger::divide_without_allocation(x, b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
    return temp_remainder;
}

UnsignedBigInteger ModularPower(const UnsignedBigInteger& b, const UnsignedBigInteger& e, const UnsignedBigInteger& m)
{
    if (m == 1)
        return 0;

    UnsignedBigInteger ep { e };
    UnsignedBigInteger base { b };
    UnsignedBigInteger exp { 1 };

    UnsignedBigInteger temp_1;
    UnsignedBigInteger temp_2;
    UnsignedBigInteger temp_3;
    UnsignedBigInteger temp_4;
    UnsignedBigInteger temp_multiply;
    UnsignedBigInteger temp_quotient;
    UnsignedBigInteger temp_remainder;

    while (!(ep < 1)) {
        if (ep.words()[0] % 2 == 1) {
            // exp = (exp * base) % m;
            UnsignedBigInteger::multiply_without_allocation(exp, base, temp_1, temp_2, temp_3, temp_4, temp_multiply);
            UnsignedBigInteger::divide_without_allocation(temp_multiply, m, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
            exp.set_to(temp_remainder);
        }

        // ep = ep / 2;
        UnsignedBigInteger::divide_u16_without_allocation(ep, 2, temp_quotient, temp_remainder);
        ep.set_to(temp_quotient);

        // base = (base * base) % m;
        UnsignedBigInteger::multiply_without_allocation(base, base, temp_1, temp_2, temp_3, temp_4, temp_multiply);
        UnsignedBigInteger::divide_without_allocation(temp_multiply, m, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
        base.set_to(temp_remainder);
    }
    return exp;
}

static void GCD_without_allocation(
    const UnsignedBigInteger& a,
    const UnsignedBigInteger& b,
    UnsignedBigInteger& temp_a,
    UnsignedBigInteger& temp_b,
    UnsignedBigInteger& temp_1,
    UnsignedBigInteger& temp_2,
    UnsignedBigInteger& temp_3,
    UnsignedBigInteger& temp_4,
    UnsignedBigInteger& temp_quotient,
    UnsignedBigInteger& temp_remainder,
    UnsignedBigInteger& output)
{
    temp_a.set_to(a);
    temp_b.set_to(b);
    for (;;) {
        if (temp_a == 0) {
            output.set_to(temp_b);
            return;
        }

        // temp_b %= temp_a
        UnsignedBigInteger::divide_without_allocation(temp_b, temp_a, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
        temp_b.set_to(temp_remainder);
        if (temp_b == 0) {
            output.set_to(temp_a);
            return;
        }

        // temp_a %= temp_b
        UnsignedBigInteger::divide_without_allocation(temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
        temp_a.set_to(temp_remainder);
    }
}

UnsignedBigInteger GCD(const UnsignedBigInteger& a, const UnsignedBigInteger& b)
{
    UnsignedBigInteger temp_a;
    UnsignedBigInteger temp_b;
    UnsignedBigInteger temp_1;
    UnsignedBigInteger temp_2;
    UnsignedBigInteger temp_3;
    UnsignedBigInteger temp_4;
    UnsignedBigInteger temp_quotient;
    UnsignedBigInteger temp_remainder;
    UnsignedBigInteger output;

    GCD_without_allocation(a, b, temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, output);

    return output;
}

UnsignedBigInteger LCM(const UnsignedBigInteger& a, const UnsignedBigInteger& b)
{
    UnsignedBigInteger temp_a;
    UnsignedBigInteger temp_b;
    UnsignedBigInteger temp_1;
    UnsignedBigInteger temp_2;
    UnsignedBigInteger temp_3;
    UnsignedBigInteger temp_4;
    UnsignedBigInteger temp_quotient;
    UnsignedBigInteger temp_remainder;
    UnsignedBigInteger gcd_output;
    UnsignedBigInteger output { 0 };

    GCD_without_allocation(a, b, temp_a, temp_b, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder, gcd_output);
    if (gcd_output == 0) {
#if NT_DEBUG
        dbgln("GCD is zero");
#endif
        return output;
    }

    // output = (a / gcd_output) * b
    UnsignedBigInteger::divide_without_allocation(a, gcd_output, temp_1, temp_2, temp_3, temp_4, temp_quotient, temp_remainder);
    UnsignedBigInteger::multiply_without_allocation(temp_quotient, b, temp_1, temp_2, temp_3, temp_4, output);

    dbgln<NT_DEBUG>("quot: {} rem: {} out: {}", temp_quotient, temp_remainder, output);

    return output;
}

static bool MR_primality_test(UnsignedBigInteger n, const Vector<UnsignedBigInteger, 256>& tests)
{
    // Written using Wikipedia:
    // https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Miller%E2%80%93Rabin_test
    ASSERT(!(n < 4));
    auto predecessor = n.minus({ 1 });
    auto d = predecessor;
    size_t r = 0;

    {
        auto div_result = d.divided_by(2);
        while (div_result.remainder == 0) {
            d = div_result.quotient;
            div_result = d.divided_by(2);
            ++r;
        }
    }
    if (r == 0) {
        // n - 1 is odd, so n was even. But there is only one even prime:
        return n == 2;
    }

    for (auto a : tests) {
        // Technically: ASSERT(2 <= a && a <= n - 2)
        ASSERT(a < n);
        auto x = ModularPower(a, d, n);
        if (x == 1 || x == predecessor)
            continue;
        bool skip_this_witness = false;
        // r − 1 iterations.
        for (size_t i = 0; i < r - 1; ++i) {
            x = ModularPower(x, 2, n);
            if (x == predecessor) {
                skip_this_witness = true;
                break;
            }
        }
        if (skip_this_witness)
            continue;
        return false; // "composite"
    }

    return true; // "probably prime"
}

UnsignedBigInteger random_number(const UnsignedBigInteger& min, const UnsignedBigInteger& max_excluded)
{
    ASSERT(min < max_excluded);
    auto range = max_excluded.minus(min);
    UnsignedBigInteger base;
    auto size = range.trimmed_length() * sizeof(u32) + 2;
    // "+2" is intentional (see below).
    // Also, if we're about to crash anyway, at least produce a nice error:
    ASSERT(size < 8 * MiB);
    u8 buf[size];
    AK::fill_with_random(buf, size);
    UnsignedBigInteger random { buf, size };
    // At this point, `random` is a large number, in the range [0, 256^size).
    // To get down to the actual range, we could just compute random % range.
    // This introduces "modulo bias". However, since we added 2 to `size`,
    // we know that the generated range is at least 65536 times as large as the
    // required range! This means that the modulo bias is only 0.0015%, if all
    // inputs are chosen adversarially. Let's hope this is good enough.
    auto divmod = random.divided_by(range);
    // The proper way to fix this is to restart if `divmod.quotient` is maximal.
    return divmod.remainder.plus(min);
}

bool is_probably_prime(const UnsignedBigInteger& p)
{
    // Is it a small number?
    if (p < 49) {
        u32 p_value = p.words()[0];
        // Is it a very small prime?
        if (p_value == 2 || p_value == 3 || p_value == 5 || p_value == 7)
            return true;
        // Is it the multiple of a very small prime?
        if (p_value % 2 == 0 || p_value % 3 == 0 || p_value % 5 == 0 || p_value % 7 == 0)
            return false;
        // Then it must be a prime, but not a very small prime, like 37.
        return true;
    }

    Vector<UnsignedBigInteger, 256> tests;
    // Make some good initial guesses that are guaranteed to find all primes < 2^64.
    tests.append(UnsignedBigInteger(2));
    tests.append(UnsignedBigInteger(3));
    tests.append(UnsignedBigInteger(5));
    tests.append(UnsignedBigInteger(7));
    tests.append(UnsignedBigInteger(11));
    tests.append(UnsignedBigInteger(13));
    UnsignedBigInteger seventeen { 17 };
    for (size_t i = tests.size(); i < 256; ++i) {
        tests.append(random_number(seventeen, p.minus(2)));
    }
    // Miller-Rabin's "error" is 8^-k. In adversarial cases, it's 4^-k.
    // With 200 random numbers, this would mean an error of about 2^-400.
    // So we don't need to worry too much about the quality of the random numbers.

    return MR_primality_test(p, tests);
}

UnsignedBigInteger random_big_prime(size_t bits)
{
    ASSERT(bits >= 33);
    UnsignedBigInteger min = UnsignedBigInteger::from_base10("6074001000").shift_left(bits - 33);
    UnsignedBigInteger max = UnsignedBigInteger { 1 }.shift_left(bits).minus(1);
    for (;;) {
        auto p = random_number(min, max);
        if ((p.words()[0] & 1) == 0) {
            // An even number is definitely not a large prime.
            continue;
        }
        if (is_probably_prime(p))
            return p;
    }
}

}
}