1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
|
/*
* Copyright (c) 2022, Michiel Visser <opensource@webmichiel.nl>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/ByteReader.h>
#include <AK/Endian.h>
#include <AK/Random.h>
#include <AK/StringBuilder.h>
#include <AK/UFixedBigInt.h>
#include <LibCrypto/Curves/SECP256r1.h>
namespace Crypto::Curves {
static constexpr u256 REDUCE_PRIME { u128 { 0x0000000000000001ull, 0xffffffff00000000ull }, u128 { 0xffffffffffffffffull, 0x00000000fffffffe } };
static constexpr u256 REDUCE_ORDER { u128 { 0x0c46353d039cdaafull, 0x4319055258e8617bull }, u128 { 0x0000000000000000ull, 0x00000000ffffffff } };
static constexpr u256 PRIME_INVERSE_MOD_R { u128 { 0x0000000000000001ull, 0x0000000100000000ull }, u128 { 0x0000000000000000ull, 0xffffffff00000002ull } };
static constexpr u256 PRIME { u128 { 0xffffffffffffffffull, 0x00000000ffffffffull }, u128 { 0x0000000000000000ull, 0xffffffff00000001ull } };
static constexpr u256 R2_MOD_PRIME { u128 { 0x0000000000000003ull, 0xfffffffbffffffffull }, u128 { 0xfffffffffffffffeull, 0x00000004fffffffdull } };
static constexpr u256 ONE { 1u };
static constexpr u256 B_MONTGOMERY { u128 { 0xd89cdf6229c4bddfull, 0xacf005cd78843090ull }, u128 { 0xe5a220abf7212ed6ull, 0xdc30061d04874834ull } };
static u256 import_big_endian(ReadonlyBytes data)
{
VERIFY(data.size() == 32);
u64 d = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(0 * sizeof(u64))));
u64 c = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(1 * sizeof(u64))));
u64 b = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(2 * sizeof(u64))));
u64 a = AK::convert_between_host_and_big_endian(ByteReader::load64(data.offset_pointer(3 * sizeof(u64))));
return u256 { u128 { a, b }, u128 { c, d } };
}
static void export_big_endian(u256 const& value, Bytes data)
{
u64 a = AK::convert_between_host_and_big_endian(value.low().low());
u64 b = AK::convert_between_host_and_big_endian(value.low().high());
u64 c = AK::convert_between_host_and_big_endian(value.high().low());
u64 d = AK::convert_between_host_and_big_endian(value.high().high());
ByteReader::store(data.offset_pointer(0 * sizeof(u64)), d);
ByteReader::store(data.offset_pointer(1 * sizeof(u64)), c);
ByteReader::store(data.offset_pointer(2 * sizeof(u64)), b);
ByteReader::store(data.offset_pointer(3 * sizeof(u64)), a);
}
static u256 select(u256 const& left, u256 const& right, bool condition)
{
// If condition = 0 return left else right
u256 mask = (u256)condition - 1;
return (left & mask) | (right & ~mask);
}
static u512 multiply(u256 const& left, u256 const& right)
{
return left.wide_multiply(right);
}
static u256 modular_reduce(u256 const& value)
{
// Add -prime % 2^256 = 2^224-2^192-2^96+1
bool carry = false;
u256 other = value.addc(REDUCE_PRIME, carry);
// Check for overflow
return select(value, other, carry);
}
static u256 modular_reduce_order(u256 const& value)
{
// Add -order % 2^256
bool carry = false;
u256 other = value.addc(REDUCE_ORDER, carry);
// Check for overflow
return select(value, other, carry);
}
static u256 modular_add(u256 const& left, u256 const& right, bool carry_in = false)
{
bool carry = carry_in;
u256 output = left.addc(right, carry);
// If there is left carry, subtract p by adding 2^256 - p
u64 t = carry;
carry = false;
u256 addend { u128 { t, -(t << 32) }, u128 { -t, (t << 32) - (t << 1) } };
output = output.addc(addend, carry);
// If there is still left carry, subtract p by adding 2^256 - p
t = carry;
addend = { u128 { t, -(t << 32) }, u128 { -t, (t << 32) - (t << 1) } };
return output + addend;
}
static u256 modular_sub(u256 const& left, u256 const& right)
{
bool borrow = false;
u256 output = left.subc(right, borrow);
// If there is left borrow, add p by subtracting 2^256 - p
u64 t = borrow;
borrow = false;
u256 sub { u128 { t, -(t << 32) }, u128 { -t, (t << 32) - (t << 1) } };
output = output.subc(sub, borrow);
// If there is still left borrow, add p by subtracting 2^256 - p
t = borrow;
sub = { u128 { t, -(t << 32) }, u128 { -t, (t << 32) - (t << 1) } };
return output - sub;
}
static u256 modular_multiply(u256 const& left, u256 const& right)
{
// Modular multiplication using the Montgomery method: https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
// This requires that the inputs to this function are in Montgomery form.
// T = left * right
u512 mult = multiply(left, right);
// m = ((T mod R) * curve_p')
u512 m = multiply(mult.low(), PRIME_INVERSE_MOD_R);
// mp = (m mod R) * curve_p
u512 mp = multiply(m.low(), PRIME);
// t = (T + mp)
bool carry = false;
mult.low().addc(mp.low(), carry);
// output = t / R
return modular_add(mult.high(), mp.high(), carry);
}
static u256 modular_square(u256 const& value)
{
return modular_multiply(value, value);
}
static u256 to_montgomery(u256 const& value)
{
return modular_multiply(value, R2_MOD_PRIME);
}
static u256 from_montgomery(u256 const& value)
{
return modular_multiply(value, ONE);
}
static u256 modular_inverse(u256 const& value)
{
// Modular inverse modulo the curve prime can be computed using Fermat's little theorem: a^(p-2) mod p = a^-1 mod p.
// Calculating a^(p-2) mod p can be done using the square-and-multiply exponentiation method, as p-2 is constant.
//
// p-2 = 2^256 - 2^224 + 2^192 + 2^96 - 3, or written as binary:
// 1111111111111111111111111111111100000000000000000000000000000001
// 0000000000000000000000000000000000000000000000000000000000000000
// 0000000000000000000000000000000011111111111111111111111111111111
// 1111111111111111111111111111111111111111111111111111111111111101
u256 base = value;
// 1
u256 result = value;
base = modular_square(base);
// 0
base = modular_square(base);
// 94*1
for (auto i = 0; i < 94; i++) {
result = modular_multiply(result, base);
base = modular_square(base);
}
// 96*0
for (auto i = 0; i < 96; i++) {
base = modular_square(base);
}
// 1
result = modular_multiply(result, base);
base = modular_square(base);
// 31*0
for (auto i = 0; i < 31; i++) {
base = modular_square(base);
}
// 32*1
for (auto i = 0; i < 32; i++) {
result = modular_multiply(result, base);
base = modular_square(base);
}
return result;
}
static void point_double(JacobianPoint& output_point, JacobianPoint const& point)
{
// Based on "Point Doubling" from http://point-at-infinity.org/ecc/Prime_Curve_Jacobian_Coordinates.html
// if (Y == 0)
// return POINT_AT_INFINITY
if (point.y.is_zero_constant_time()) {
VERIFY_NOT_REACHED();
}
u256 temp;
// Y2 = Y^2
u256 y2 = modular_square(point.y);
// S = 4*X*Y2
u256 s = modular_multiply(point.x, y2);
s = modular_add(s, s);
s = modular_add(s, s);
// M = 3*X^2 + a*Z^4 = 3*(X + Z^2)*(X - Z^2)
// This specific equation from https://github.com/earlephilhower/bearssl-esp8266/blob/6105635531027f5b298aa656d44be2289b2d434f/src/ec/ec_p256_m64.c#L811-L816
// This simplification only works because a = -3 mod p
temp = modular_square(point.z);
u256 m = modular_add(point.x, temp);
temp = modular_sub(point.x, temp);
m = modular_multiply(m, temp);
temp = modular_add(m, m);
m = modular_add(m, temp);
// X' = M^2 - 2*S
u256 xp = modular_square(m);
xp = modular_sub(xp, s);
xp = modular_sub(xp, s);
// Y' = M*(S - X') - 8*Y2^2
u256 yp = modular_sub(s, xp);
yp = modular_multiply(yp, m);
temp = modular_square(y2);
temp = modular_add(temp, temp);
temp = modular_add(temp, temp);
temp = modular_add(temp, temp);
yp = modular_sub(yp, temp);
// Z' = 2*Y*Z
u256 zp = modular_multiply(point.y, point.z);
zp = modular_add(zp, zp);
// return (X', Y', Z')
output_point.x = xp;
output_point.y = yp;
output_point.z = zp;
}
static void point_add(JacobianPoint& output_point, JacobianPoint const& point_a, JacobianPoint const& point_b)
{
// Based on "Point Addition" from http://point-at-infinity.org/ecc/Prime_Curve_Jacobian_Coordinates.html
if (point_a.x.is_zero_constant_time() && point_a.y.is_zero_constant_time() && point_a.z.is_zero_constant_time()) {
output_point.x = point_b.x;
output_point.y = point_b.y;
output_point.z = point_b.z;
return;
}
u256 temp;
temp = modular_square(point_b.z);
// U1 = X1*Z2^2
u256 u1 = modular_multiply(point_a.x, temp);
// S1 = Y1*Z2^3
u256 s1 = modular_multiply(point_a.y, temp);
s1 = modular_multiply(s1, point_b.z);
temp = modular_square(point_a.z);
// U2 = X2*Z1^2
u256 u2 = modular_multiply(point_b.x, temp);
// S2 = Y2*Z1^3
u256 s2 = modular_multiply(point_b.y, temp);
s2 = modular_multiply(s2, point_a.z);
// if (U1 == U2)
// if (S1 != S2)
// return POINT_AT_INFINITY
// else
// return POINT_DOUBLE(X1, Y1, Z1)
if (u1.is_equal_to_constant_time(u2)) {
if (s1.is_equal_to_constant_time(s2)) {
point_double(output_point, point_a);
return;
} else {
VERIFY_NOT_REACHED();
}
}
// H = U2 - U1
u256 h = modular_sub(u2, u1);
u256 h2 = modular_square(h);
u256 h3 = modular_multiply(h2, h);
// R = S2 - S1
u256 r = modular_sub(s2, s1);
// X3 = R^2 - H^3 - 2*U1*H^2
u256 x3 = modular_square(r);
x3 = modular_sub(x3, h3);
temp = modular_multiply(u1, h2);
temp = modular_add(temp, temp);
x3 = modular_sub(x3, temp);
// Y3 = R*(U1*H^2 - X3) - S1*H^3
u256 y3 = modular_multiply(u1, h2);
y3 = modular_sub(y3, x3);
y3 = modular_multiply(y3, r);
temp = modular_multiply(s1, h3);
y3 = modular_sub(y3, temp);
// Z3 = H*Z1*Z2
u256 z3 = modular_multiply(h, point_a.z);
z3 = modular_multiply(z3, point_b.z);
// return (X3, Y3, Z3)
output_point.x = x3;
output_point.y = y3;
output_point.z = z3;
}
static void convert_jacobian_to_affine(JacobianPoint& point)
{
u256 temp;
// X' = X/Z^2
temp = modular_square(point.z);
temp = modular_inverse(temp);
point.x = modular_multiply(point.x, temp);
// Y' = Y/Z^3
temp = modular_square(point.z);
temp = modular_multiply(temp, point.z);
temp = modular_inverse(temp);
point.y = modular_multiply(point.y, temp);
}
static bool is_point_on_curve(JacobianPoint const& point)
{
// This check requires the point to be in Montgomery form, with Z=1
u256 temp, temp2;
// Calulcate Y^2 - X^3 - a*X - b = Y^2 - X^3 + 3*X - b
temp = modular_square(point.y);
temp2 = modular_square(point.x);
temp2 = modular_multiply(temp2, point.x);
temp = modular_sub(temp, temp2);
temp = modular_add(temp, point.x);
temp = modular_add(temp, point.x);
temp = modular_add(temp, point.x);
temp = modular_sub(temp, B_MONTGOMERY);
temp = modular_reduce(temp);
return temp.is_zero_constant_time();
}
ErrorOr<ByteBuffer> SECP256r1::generate_private_key()
{
auto buffer = TRY(ByteBuffer::create_uninitialized(32));
fill_with_random(buffer);
return buffer;
}
ErrorOr<ByteBuffer> SECP256r1::generate_public_key(ReadonlyBytes a)
{
// clang-format off
u8 generator_bytes[65] {
0x04,
0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8, 0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2,
0x77, 0x03, 0x7D, 0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96,
0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F, 0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16,
0x2B, 0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40, 0x68, 0x37, 0xBF, 0x51, 0xF5,
};
// clang-format on
return compute_coordinate(a, { generator_bytes, 65 });
}
ErrorOr<ByteBuffer> SECP256r1::compute_coordinate(ReadonlyBytes scalar_bytes, ReadonlyBytes point_bytes)
{
VERIFY(scalar_bytes.size() == 32);
u256 scalar = import_big_endian(scalar_bytes);
// FIXME: This will slightly bias the distribution of client secrets
scalar = modular_reduce_order(scalar);
if (scalar.is_zero_constant_time())
return Error::from_string_literal("SECP256r1: scalar is zero");
// Make sure the point is uncompressed
if (point_bytes.size() != 65 || point_bytes[0] != 0x04)
return Error::from_string_literal("SECP256r1: point is not uncompressed format");
JacobianPoint point {
import_big_endian(point_bytes.slice(1, 32)),
import_big_endian(point_bytes.slice(33, 32)),
1u,
};
// Convert the input point into Montgomery form
point.x = to_montgomery(point.x);
point.y = to_montgomery(point.y);
point.z = to_montgomery(point.z);
// Check that the point is on the curve
if (!is_point_on_curve(point))
return Error::from_string_literal("SECP256r1: point is not on the curve");
JacobianPoint result;
JacobianPoint temp_result;
// Calculate the scalar times point multiplication in constant time
for (auto i = 0; i < 256; i++) {
point_add(temp_result, result, point);
auto condition = (scalar & 1u) == 1u;
result.x = select(result.x, temp_result.x, condition);
result.y = select(result.y, temp_result.y, condition);
result.z = select(result.z, temp_result.z, condition);
point_double(point, point);
scalar >>= 1u;
}
// Convert from Jacobian coordinates back to Affine coordinates
convert_jacobian_to_affine(result);
// Make sure the resulting point is on the curve
VERIFY(is_point_on_curve(result));
// Convert the result back from Montgomery form
result.x = from_montgomery(result.x);
result.y = from_montgomery(result.y);
// Final modular reduction on the coordinates
result.x = modular_reduce(result.x);
result.y = modular_reduce(result.y);
// Export the values into an output buffer
auto buf = TRY(ByteBuffer::create_uninitialized(65));
buf[0] = 0x04;
export_big_endian(result.x, buf.bytes().slice(1, 32));
export_big_endian(result.y, buf.bytes().slice(33, 32));
return buf;
}
ErrorOr<ByteBuffer> SECP256r1::derive_premaster_key(ReadonlyBytes shared_point)
{
VERIFY(shared_point.size() == 65);
VERIFY(shared_point[0] == 0x04);
ByteBuffer premaster_key = TRY(ByteBuffer::create_uninitialized(32));
premaster_key.overwrite(0, shared_point.data() + 1, 32);
return premaster_key;
}
}
|