summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibCrypto/BigInt/Algorithms/BitwiseOperations.cpp
blob: 2003e4896c443be4e1fc6dbc533cc2cfa3fc5522 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*
 * Copyright (c) 2020, Itamar S. <itamar8910@gmail.com>
 * Copyright (c) 2020-2021, Dex♪ <dexes.ttp@gmail.com>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include "UnsignedBigIntegerAlgorithms.h"
#include <AK/BuiltinWrappers.h>
#include <AK/NumericLimits.h>

namespace Crypto {

/**
 * Complexity: O(N) where N is the number of words in the shorter value
 * Method:
 * Apply <op> word-wise until words in the shorter value are used up
 * then copy the rest of the words verbatim from the longer value.
 */
FLATTEN void UnsignedBigIntegerAlgorithms::bitwise_or_without_allocation(
    UnsignedBigInteger const& left,
    UnsignedBigInteger const& right,
    UnsignedBigInteger& output)
{
    // If either of the BigInts are invalid, the output is just the other one.
    if (left.is_invalid()) {
        output.set_to(right);
        return;
    }
    if (right.is_invalid()) {
        output.set_to(left);
        return;
    }

    UnsignedBigInteger const *shorter, *longer;
    if (left.length() < right.length()) {
        shorter = &left;
        longer = &right;
    } else {
        shorter = &right;
        longer = &left;
    }

    output.m_words.resize_and_keep_capacity(longer->length());

    size_t longer_offset = longer->length() - shorter->length();
    for (size_t i = 0; i < shorter->length(); ++i)
        output.m_words[i] = longer->words()[i] | shorter->words()[i];

    __builtin_memcpy(output.m_words.data() + shorter->length(), longer->words().data() + shorter->length(), sizeof(u32) * longer_offset);
}

/**
 * Complexity: O(N) where N is the number of words in the shorter value
 * Method:
 * Apply 'and' word-wise until words in the shorter value are used up
 * and zero the rest.
 */
FLATTEN void UnsignedBigIntegerAlgorithms::bitwise_and_without_allocation(
    UnsignedBigInteger const& left,
    UnsignedBigInteger const& right,
    UnsignedBigInteger& output)
{
    // If either of the BigInts are invalid, the output is just the other one.
    if (left.is_invalid()) {
        output.set_to(right);
        return;
    }
    if (right.is_invalid()) {
        output.set_to(left);
        return;
    }

    UnsignedBigInteger const *shorter, *longer;
    if (left.length() < right.length()) {
        shorter = &left;
        longer = &right;
    } else {
        shorter = &right;
        longer = &left;
    }

    output.m_words.resize_and_keep_capacity(longer->length());

    size_t longer_offset = longer->length() - shorter->length();
    for (size_t i = 0; i < shorter->length(); ++i)
        output.m_words[i] = longer->words()[i] & shorter->words()[i];

    __builtin_memset(output.m_words.data() + shorter->length(), 0, sizeof(u32) * longer_offset);
}

/**
 * Complexity: O(N) where N is the number of words in the shorter value
 * Method:
 * Apply 'xor' word-wise until words in the shorter value are used up
 * and copy the rest.
 */
FLATTEN void UnsignedBigIntegerAlgorithms::bitwise_xor_without_allocation(
    UnsignedBigInteger const& left,
    UnsignedBigInteger const& right,
    UnsignedBigInteger& output)
{
    // If either of the BigInts are invalid, the output is just the other one.
    if (left.is_invalid()) {
        output.set_to(right);
        return;
    }
    if (right.is_invalid()) {
        output.set_to(left);
        return;
    }

    UnsignedBigInteger const *shorter, *longer;
    if (left.length() < right.length()) {
        shorter = &left;
        longer = &right;
    } else {
        shorter = &right;
        longer = &left;
    }

    output.m_words.resize_and_keep_capacity(longer->length());

    size_t longer_offset = longer->length() - shorter->length();
    for (size_t i = 0; i < shorter->length(); ++i)
        output.m_words[i] = longer->words()[i] ^ shorter->words()[i];

    __builtin_memcpy(output.m_words.data() + shorter->length(), longer->words().data() + shorter->length(), sizeof(u32) * longer_offset);
}

/**
 * Complexity: O(N) where N is the number of words
 */
FLATTEN void UnsignedBigIntegerAlgorithms::bitwise_not_fill_to_one_based_index_without_allocation(
    UnsignedBigInteger const& right,
    size_t index,
    UnsignedBigInteger& output)
{
    // If the value is invalid, the output value is invalid as well.
    if (right.is_invalid()) {
        output.invalidate();
        return;
    }

    if (index == 0) {
        output.set_to_0();
        return;
    }
    size_t size = (index + UnsignedBigInteger::BITS_IN_WORD - 1) / UnsignedBigInteger::BITS_IN_WORD;

    output.m_words.resize_and_keep_capacity(size);
    VERIFY(size > 0);
    for (size_t i = 0; i < size - 1; ++i)
        output.m_words[i] = ~(i < right.length() ? right.words()[i] : 0);

    index -= (size - 1) * UnsignedBigInteger::BITS_IN_WORD;
    auto last_word_index = size - 1;
    auto last_word = last_word_index < right.length() ? right.words()[last_word_index] : 0;

    output.m_words[last_word_index] = (NumericLimits<UnsignedBigInteger::Word>::max() >> (UnsignedBigInteger::BITS_IN_WORD - index)) & ~last_word;
}

/**
 * Complexity : O(N + num_bits % 8) where N is the number of words in the number
 * Shift method :
 * Start by shifting by whole words in num_bits (by putting missing words at the start),
 * then shift the number's words two by two by the remaining amount of bits.
 */
FLATTEN void UnsignedBigIntegerAlgorithms::shift_left_without_allocation(
    UnsignedBigInteger const& number,
    size_t num_bits,
    UnsignedBigInteger& temp_result,
    UnsignedBigInteger& temp_plus,
    UnsignedBigInteger& output)
{
    // We can only do shift operations on individual words
    // where the shift amount is <= size of word (32).
    // But we do know how to shift by a multiple of word size (e.g 64=32*2)
    // So we first shift the result by how many whole words fit in 'num_bits'
    shift_left_by_n_words(number, num_bits / UnsignedBigInteger::BITS_IN_WORD, temp_result);

    output.set_to(temp_result);

    // And now we shift by the leftover amount of bits
    num_bits %= UnsignedBigInteger::BITS_IN_WORD;

    if (num_bits == 0) {
        return;
    }

    for (size_t i = 0; i < temp_result.length(); ++i) {
        u32 current_word_of_temp_result = shift_left_get_one_word(temp_result, num_bits, i);
        output.m_words[i] = current_word_of_temp_result;
    }

    // Shifting the last word can produce a carry
    u32 carry_word = shift_left_get_one_word(temp_result, num_bits, temp_result.length());
    if (carry_word != 0) {

        // output += (carry_word << temp_result.length())
        // FIXME : Using temp_plus this way to transform carry_word into a bigint is not
        //         efficient nor pretty. Maybe we should have an "add_with_shift" method ?
        temp_plus.set_to_0();
        temp_plus.m_words.append(carry_word);
        shift_left_by_n_words(temp_plus, temp_result.length(), temp_result);
        add_into_accumulator_without_allocation(output, temp_result);
    }
}

void UnsignedBigIntegerAlgorithms::shift_left_by_n_words(
    UnsignedBigInteger const& number,
    size_t number_of_words,
    UnsignedBigInteger& output)
{
    // shifting left by N words means just inserting N zeroes to the beginning of the words vector
    output.set_to_0();
    output.m_words.resize_and_keep_capacity(number_of_words + number.length());

    __builtin_memset(output.m_words.data(), 0, number_of_words * sizeof(unsigned));
    __builtin_memcpy(&output.m_words.data()[number_of_words], number.m_words.data(), number.m_words.size() * sizeof(unsigned));
}

void UnsignedBigIntegerAlgorithms::shift_right_by_n_words(
    UnsignedBigInteger const& number,
    size_t number_of_words,
    UnsignedBigInteger& output)
{
    // shifting right by N words means just not copying the first words
    output.set_to_0();
    output.m_words.resize_and_keep_capacity(number.length() - number_of_words);
    __builtin_memcpy(output.m_words.data(), &number.m_words.data()[number_of_words], (number.m_words.size() - number_of_words) * sizeof(unsigned));
}

/**
 * Returns the word at a requested index in the result of a shift operation
 */
ALWAYS_INLINE UnsignedBigInteger::Word UnsignedBigIntegerAlgorithms::shift_left_get_one_word(
    UnsignedBigInteger const& number,
    size_t num_bits,
    size_t result_word_index)
{
    // "<= length()" (rather than length() - 1) is intentional,
    // The result index of length() is used when calculating the carry word
    VERIFY(result_word_index <= number.length());
    VERIFY(num_bits <= UnsignedBigInteger::BITS_IN_WORD);
    u32 result = 0;

    // we need to check for "num_bits != 0" since shifting right by 32 is apparently undefined behavior!
    if (result_word_index > 0 && num_bits != 0) {
        result += number.m_words[result_word_index - 1] >> (UnsignedBigInteger::BITS_IN_WORD - num_bits);
    }
    if (result_word_index < number.length() && num_bits < 32) {
        result += number.m_words[result_word_index] << num_bits;
    }
    return result;
}

}