1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2022, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/ByteBuffer.h>
#include <LibCore/IODevice.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <sys/select.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <unistd.h>
namespace Core {
IODevice::IODevice(Object* parent)
: Object(parent)
{
}
char const* IODevice::error_string() const
{
return strerror(m_error);
}
int IODevice::read(u8* buffer, int length)
{
auto read_buffer = read(length);
memcpy(buffer, read_buffer.data(), length);
return read_buffer.size();
}
ByteBuffer IODevice::read(size_t max_size)
{
if (m_fd < 0)
return {};
if (!max_size)
return {};
if (m_buffered_data.size() < max_size)
populate_read_buffer(max(max_size - m_buffered_data.size(), 1024));
auto size = min(max_size, m_buffered_data.size());
auto buffer_result = ByteBuffer::create_uninitialized(size);
if (buffer_result.is_error()) {
dbgln("IODevice::read: Not enough memory to allocate a buffer of {} bytes", size);
return {};
}
auto buffer = buffer_result.release_value();
auto* buffer_ptr = (char*)buffer.data();
memcpy(buffer_ptr, m_buffered_data.data(), size);
m_buffered_data.remove(0, size);
return buffer;
}
bool IODevice::can_read_from_fd() const
{
// FIXME: Can we somehow remove this once Core::Socket is implemented using non-blocking sockets?
fd_set rfds {};
FD_ZERO(&rfds);
FD_SET(m_fd, &rfds);
struct timeval timeout {
0, 0
};
for (;;) {
if (select(m_fd + 1, &rfds, nullptr, nullptr, &timeout) < 0) {
if (errno == EINTR)
continue;
perror("IODevice::can_read_from_fd: select");
return false;
}
break;
}
return FD_ISSET(m_fd, &rfds);
}
bool IODevice::can_read_line() const
{
if (m_eof && !m_buffered_data.is_empty())
return true;
if (m_buffered_data.contains_slow('\n'))
return true;
if (!can_read_from_fd())
return false;
while (true) {
// Populate buffer until a newline is found or we reach EOF.
auto previous_buffer_size = m_buffered_data.size();
populate_read_buffer();
auto new_buffer_size = m_buffered_data.size();
if (m_error)
return false;
if (m_eof)
return !m_buffered_data.is_empty();
if (m_buffered_data.contains_in_range('\n', previous_buffer_size, new_buffer_size - 1))
return true;
}
}
bool IODevice::can_read() const
{
return !m_buffered_data.is_empty() || can_read_from_fd();
}
ByteBuffer IODevice::read_all()
{
off_t file_size = 0;
struct stat st;
int rc = fstat(fd(), &st);
if (rc == 0)
file_size = st.st_size;
Vector<u8> data;
data.ensure_capacity(file_size);
if (!m_buffered_data.is_empty()) {
data.append(m_buffered_data.data(), m_buffered_data.size());
m_buffered_data.clear();
}
while (true) {
char read_buffer[4096];
int nread = ::read(m_fd, read_buffer, sizeof(read_buffer));
if (nread < 0) {
set_error(errno);
break;
}
if (nread == 0) {
set_eof(true);
break;
}
data.append((u8 const*)read_buffer, nread);
}
auto result = ByteBuffer::copy(data);
if (!result.is_error())
return result.release_value();
set_error(ENOMEM);
return {};
}
String IODevice::read_line(size_t max_size)
{
if (m_fd < 0)
return {};
if (!max_size)
return {};
if (!can_read_line())
return {};
if (m_eof) {
if (m_buffered_data.size() > max_size) {
dbgln("IODevice::read_line: At EOF but there's more than max_size({}) buffered", max_size);
return {};
}
auto line = String((char const*)m_buffered_data.data(), m_buffered_data.size(), Chomp);
m_buffered_data.clear();
return line;
}
auto line_result = ByteBuffer::create_uninitialized(max_size + 1);
if (line_result.is_error()) {
dbgln("IODevice::read_line: Not enough memory to allocate a buffer of {} bytes", max_size + 1);
return {};
}
auto line = line_result.release_value();
size_t line_index = 0;
while (line_index < max_size) {
u8 ch = m_buffered_data[line_index];
line[line_index++] = ch;
if (ch == '\n') {
Vector<u8> new_buffered_data;
new_buffered_data.append(m_buffered_data.data() + line_index, m_buffered_data.size() - line_index);
m_buffered_data = move(new_buffered_data);
line.resize(line_index);
return String::copy(line, Chomp);
}
}
return {};
}
bool IODevice::populate_read_buffer(size_t size) const
{
if (m_fd < 0)
return false;
if (!size)
return false;
auto buffer_result = ByteBuffer::create_uninitialized(size);
if (buffer_result.is_error()) {
dbgln("IODevice::populate_read_buffer: Not enough memory to allocate a buffer of {} bytes", size);
return {};
}
auto buffer = buffer_result.release_value();
auto* buffer_ptr = (char*)buffer.data();
int nread = ::read(m_fd, buffer_ptr, size);
if (nread < 0) {
set_error(errno);
return false;
}
if (nread == 0) {
set_eof(true);
return false;
}
m_buffered_data.append(buffer.data(), nread);
return true;
}
bool IODevice::close()
{
if (fd() < 0 || m_mode == OpenMode::NotOpen)
return false;
int rc = ::close(fd());
if (rc < 0) {
set_error(errno);
return false;
}
set_fd(-1);
set_mode(OpenMode::NotOpen);
return true;
}
bool IODevice::seek(i64 offset, SeekMode mode, off_t* pos)
{
int m = SEEK_SET;
switch (mode) {
case SeekMode::SetPosition:
m = SEEK_SET;
break;
case SeekMode::FromCurrentPosition:
m = SEEK_CUR;
offset -= m_buffered_data.size();
break;
case SeekMode::FromEndPosition:
m = SEEK_END;
break;
}
off_t rc = lseek(m_fd, offset, m);
if (rc < 0) {
set_error(errno);
if (pos)
*pos = -1;
return false;
}
m_buffered_data.clear();
m_eof = false;
if (pos)
*pos = rc;
return true;
}
bool IODevice::truncate(off_t size)
{
int rc = ftruncate(m_fd, size);
if (rc < 0) {
set_error(errno);
return false;
}
return true;
}
bool IODevice::write(u8 const* data, int size)
{
int rc = ::write(m_fd, data, size);
if (rc < 0) {
set_error(errno);
perror("IODevice::write: write");
return false;
}
return rc == size;
}
void IODevice::set_fd(int fd)
{
if (m_fd == fd)
return;
m_fd = fd;
did_update_fd(fd);
}
bool IODevice::write(StringView v)
{
return write((u8 const*)v.characters_without_null_termination(), v.length());
}
LineIterator::LineIterator(IODevice& device, bool is_end)
: m_device(device)
, m_is_end(is_end)
{
if (!m_is_end) {
++*this;
}
}
bool LineIterator::at_end() const
{
return m_device->eof();
}
LineIterator& LineIterator::operator++()
{
m_buffer = m_device->read_line();
return *this;
}
LineIterator LineRange::begin() { return m_device.line_begin(); }
LineIterator LineRange::end() { return m_device.line_end(); }
}
|