summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibCore/EventLoopImplementationUnix.cpp
blob: 1dc525d1f2ff9f8ed3d0f5c8ec6f31a6f2f431a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
/*
 * Copyright (c) 2023, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/IDAllocator.h>
#include <AK/Singleton.h>
#include <AK/TemporaryChange.h>
#include <AK/Time.h>
#include <AK/WeakPtr.h>
#include <LibCore/Event.h>
#include <LibCore/EventLoopImplementationUnix.h>
#include <LibCore/Notifier.h>
#include <LibCore/Object.h>
#include <LibCore/Socket.h>
#include <LibCore/System.h>
#include <LibCore/ThreadEventQueue.h>
#include <sys/select.h>
#include <unistd.h>

namespace Core {

struct ThreadData;

namespace {
thread_local ThreadData* s_thread_data;
}

struct EventLoopTimer {
    int timer_id { 0 };
    Time interval;
    Time fire_time;
    bool should_reload { false };
    TimerShouldFireWhenNotVisible fire_when_not_visible { TimerShouldFireWhenNotVisible::No };
    WeakPtr<Object> owner;

    void reload(Time const& now) { fire_time = now + interval; }
    bool has_expired(Time const& now) const { return now > fire_time; }
};

struct ThreadData {
    static ThreadData& the()
    {
        if (!s_thread_data) {
            // FIXME: Don't leak this.
            s_thread_data = new ThreadData;
        }
        return *s_thread_data;
    }

    ThreadData()
    {
        pid = getpid();
        initialize_wake_pipe();
    }

    void initialize_wake_pipe()
    {
        if (wake_pipe_fds[0] != -1)
            close(wake_pipe_fds[0]);
        if (wake_pipe_fds[1] != -1)
            close(wake_pipe_fds[1]);

#if defined(SOCK_NONBLOCK)
        int rc = pipe2(wake_pipe_fds, O_CLOEXEC);
#else
        int rc = pipe(wake_pipe_fds);
        fcntl(wake_pipe_fds[0], F_SETFD, FD_CLOEXEC);
        fcntl(wake_pipe_fds[1], F_SETFD, FD_CLOEXEC);

#endif
        VERIFY(rc == 0);
    }

    // Each thread has its own timers, notifiers and a wake pipe.
    HashMap<int, NonnullOwnPtr<EventLoopTimer>> timers;
    HashTable<Notifier*> notifiers;

    // The wake pipe is used to notify another event loop that someone has called wake(), or a signal has been received.
    // wake() writes 0i32 into the pipe, signals write the signal number (guaranteed non-zero).
    int wake_pipe_fds[2] { -1, -1 };

    pid_t pid { 0 };

    IDAllocator id_allocator;
};

EventLoopImplementationUnix::EventLoopImplementationUnix()
    : m_wake_pipe_fds(&ThreadData::the().wake_pipe_fds)
{
}

EventLoopImplementationUnix::~EventLoopImplementationUnix() = default;

int EventLoopImplementationUnix::exec()
{
    for (;;) {
        if (m_exit_requested)
            return m_exit_code;
        pump(PumpMode::WaitForEvents);
    }
    VERIFY_NOT_REACHED();
}

size_t EventLoopImplementationUnix::pump(PumpMode mode)
{
    static_cast<EventLoopManagerUnix&>(EventLoopManager::the()).wait_for_events(mode);
    return ThreadEventQueue::current().process();
}

void EventLoopImplementationUnix::quit(int code)
{
    m_exit_requested = true;
    m_exit_code = code;
}

void EventLoopImplementationUnix::unquit()
{
    m_exit_requested = false;
    m_exit_code = 0;
}

bool EventLoopImplementationUnix::was_exit_requested() const
{
    return m_exit_requested;
}

void EventLoopImplementationUnix::wake()
{
    int wake_event = 0;
    MUST(Core::System::write((*m_wake_pipe_fds)[1], { &wake_event, sizeof(wake_event) }));
}

void EventLoopManagerUnix::wake()
{
    int wake_event = 0;
    MUST(Core::System::write(ThreadData::the().wake_pipe_fds[1], { &wake_event, sizeof(wake_event) }));
}

void EventLoopManagerUnix::deferred_invoke(Function<void()> invokee)
{
    // FIXME: Get rid of the useless DeferredInvocationContext object.
    auto context = DeferredInvocationContext::construct();
    post_event(context, make<DeferredInvocationEvent>(context, move(invokee)));
}

void EventLoopManagerUnix::wait_for_events(EventLoopImplementation::PumpMode mode)
{
    auto& thread_data = ThreadData::the();

    fd_set read_fds {};
    fd_set write_fds {};
retry:
    int max_fd = 0;
    auto add_fd_to_set = [&max_fd](int fd, fd_set& set) {
        FD_SET(fd, &set);
        if (fd > max_fd)
            max_fd = fd;
    };

    int max_fd_added = -1;
    // The wake pipe informs us of POSIX signals as well as manual calls to wake()
    add_fd_to_set(thread_data.wake_pipe_fds[0], read_fds);
    max_fd = max(max_fd, max_fd_added);

    for (auto& notifier : thread_data.notifiers) {
        if (notifier->type() == Notifier::Type::Read)
            add_fd_to_set(notifier->fd(), read_fds);
        if (notifier->type() == Notifier::Type::Write)
            add_fd_to_set(notifier->fd(), write_fds);
        if (notifier->type() == Notifier::Type::Exceptional)
            TODO();
    }

    bool has_pending_events = ThreadEventQueue::current().has_pending_events();

    // Figure out how long to wait at maximum.
    // This mainly depends on the PumpMode and whether we have pending events, but also the next expiring timer.
    Time now;
    struct timeval timeout = { 0, 0 };
    bool should_wait_forever = false;
    if (mode == EventLoopImplementation::PumpMode::WaitForEvents && !has_pending_events) {
        auto next_timer_expiration = get_next_timer_expiration();
        if (next_timer_expiration.has_value()) {
            now = Time::now_monotonic_coarse();
            auto computed_timeout = next_timer_expiration.value() - now;
            if (computed_timeout.is_negative())
                computed_timeout = Time::zero();
            timeout = computed_timeout.to_timeval();
        } else {
            should_wait_forever = true;
        }
    }

try_select_again:
    // select() and wait for file system events, calls to wake(), POSIX signals, or timer expirations.
    int marked_fd_count = select(max_fd + 1, &read_fds, &write_fds, nullptr, should_wait_forever ? nullptr : &timeout);
    // Because POSIX, we might spuriously return from select() with EINTR; just select again.
    if (marked_fd_count < 0) {
        int saved_errno = errno;
        if (saved_errno == EINTR)
            goto try_select_again;
        dbgln("EventLoopImplementationUnix::wait_for_events: {} ({}: {})", marked_fd_count, saved_errno, strerror(saved_errno));
        VERIFY_NOT_REACHED();
    }

    // We woke up due to a call to wake() or a POSIX signal.
    // Handle signals and see whether we need to handle events as well.
    if (FD_ISSET(thread_data.wake_pipe_fds[0], &read_fds)) {
        int wake_events[8];
        ssize_t nread;
        // We might receive another signal while read()ing here. The signal will go to the handle_signal properly,
        // but we get interrupted. Therefore, just retry while we were interrupted.
        do {
            errno = 0;
            nread = read(thread_data.wake_pipe_fds[0], wake_events, sizeof(wake_events));
            if (nread == 0)
                break;
        } while (nread < 0 && errno == EINTR);
        if (nread < 0) {
            perror("EventLoopImplementationUnix::wait_for_events: read from wake pipe");
            VERIFY_NOT_REACHED();
        }
        VERIFY(nread > 0);
        bool wake_requested = false;
        int event_count = nread / sizeof(wake_events[0]);
        for (int i = 0; i < event_count; i++) {
            if (wake_events[i] != 0)
                dispatch_signal(wake_events[i]);
            else
                wake_requested = true;
        }

        if (!wake_requested && nread == sizeof(wake_events))
            goto retry;
    }

    if (!thread_data.timers.is_empty()) {
        now = Time::now_monotonic_coarse();
    }

    // Handle expired timers.
    for (auto& it : thread_data.timers) {
        auto& timer = *it.value;
        if (!timer.has_expired(now))
            continue;
        auto owner = timer.owner.strong_ref();
        if (timer.fire_when_not_visible == TimerShouldFireWhenNotVisible::No
            && owner && !owner->is_visible_for_timer_purposes()) {
            continue;
        }

        if (owner)
            ThreadEventQueue::current().post_event(*owner, make<TimerEvent>(timer.timer_id));
        if (timer.should_reload) {
            timer.reload(now);
        } else {
            // FIXME: Support removing expired timers that don't want to reload.
            VERIFY_NOT_REACHED();
        }
    }

    if (!marked_fd_count)
        return;

    // Handle file system notifiers by making them normal events.
    for (auto& notifier : thread_data.notifiers) {
        if (notifier->type() == Notifier::Type::Read && FD_ISSET(notifier->fd(), &read_fds)) {
            ThreadEventQueue::current().post_event(*notifier, make<NotifierActivationEvent>(notifier->fd()));
        }
        if (notifier->type() == Notifier::Type::Write && FD_ISSET(notifier->fd(), &write_fds)) {
            ThreadEventQueue::current().post_event(*notifier, make<NotifierActivationEvent>(notifier->fd()));
        }
    }
}

class SignalHandlers : public RefCounted<SignalHandlers> {
    AK_MAKE_NONCOPYABLE(SignalHandlers);
    AK_MAKE_NONMOVABLE(SignalHandlers);

public:
    SignalHandlers(int signal_number, void (*handle_signal)(int));
    ~SignalHandlers();

    void dispatch();
    int add(Function<void(int)>&& handler);
    bool remove(int handler_id);

    bool is_empty() const
    {
        if (m_calling_handlers) {
            for (auto& handler : m_handlers_pending) {
                if (handler.value)
                    return false; // an add is pending
            }
        }
        return m_handlers.is_empty();
    }

    bool have(int handler_id) const
    {
        if (m_calling_handlers) {
            auto it = m_handlers_pending.find(handler_id);
            if (it != m_handlers_pending.end()) {
                if (!it->value)
                    return false; // a deletion is pending
            }
        }
        return m_handlers.contains(handler_id);
    }

    int m_signal_number;
    void (*m_original_handler)(int); // TODO: can't use sighandler_t?
    HashMap<int, Function<void(int)>> m_handlers;
    HashMap<int, Function<void(int)>> m_handlers_pending;
    bool m_calling_handlers { false };
};

struct SignalHandlersInfo {
    HashMap<int, NonnullRefPtr<SignalHandlers>> signal_handlers;
    int next_signal_id { 0 };
};

static Singleton<SignalHandlersInfo> s_signals;
template<bool create_if_null = true>
inline SignalHandlersInfo* signals_info()
{
    return s_signals.ptr();
}

void EventLoopManagerUnix::dispatch_signal(int signal_number)
{
    auto& info = *signals_info();
    auto handlers = info.signal_handlers.find(signal_number);
    if (handlers != info.signal_handlers.end()) {
        // Make sure we bump the ref count while dispatching the handlers!
        // This allows a handler to unregister/register while the handlers
        // are being called!
        auto handler = handlers->value;
        handler->dispatch();
    }
}

void EventLoopImplementationUnix::notify_forked_and_in_child()
{
    auto& thread_data = ThreadData::the();
    thread_data.timers.clear();
    thread_data.notifiers.clear();
    thread_data.initialize_wake_pipe();
    if (auto* info = signals_info<false>()) {
        info->signal_handlers.clear();
        info->next_signal_id = 0;
    }
    thread_data.pid = getpid();
}

Optional<Time> EventLoopManagerUnix::get_next_timer_expiration()
{
    auto now = Time::now_monotonic_coarse();
    Optional<Time> soonest {};
    for (auto& it : ThreadData::the().timers) {
        auto& fire_time = it.value->fire_time;
        auto owner = it.value->owner.strong_ref();
        if (it.value->fire_when_not_visible == TimerShouldFireWhenNotVisible::No
            && owner && !owner->is_visible_for_timer_purposes()) {
            continue;
        }
        // OPTIMIZATION: If we have a timer that needs to fire right away, we can stop looking here.
        // FIXME: This whole operation could be O(1) with a better data structure.
        if (fire_time < now)
            return now;
        if (!soonest.has_value() || fire_time < soonest.value())
            soonest = fire_time;
    }
    return soonest;
}

SignalHandlers::SignalHandlers(int signal_number, void (*handle_signal)(int))
    : m_signal_number(signal_number)
    , m_original_handler(signal(signal_number, handle_signal))
{
}

SignalHandlers::~SignalHandlers()
{
    signal(m_signal_number, m_original_handler);
}

void SignalHandlers::dispatch()
{
    TemporaryChange change(m_calling_handlers, true);
    for (auto& handler : m_handlers)
        handler.value(m_signal_number);
    if (!m_handlers_pending.is_empty()) {
        // Apply pending adds/removes
        for (auto& handler : m_handlers_pending) {
            if (handler.value) {
                auto result = m_handlers.set(handler.key, move(handler.value));
                VERIFY(result == AK::HashSetResult::InsertedNewEntry);
            } else {
                m_handlers.remove(handler.key);
            }
        }
        m_handlers_pending.clear();
    }
}

int SignalHandlers::add(Function<void(int)>&& handler)
{
    int id = ++signals_info()->next_signal_id; // TODO: worry about wrapping and duplicates?
    if (m_calling_handlers)
        m_handlers_pending.set(id, move(handler));
    else
        m_handlers.set(id, move(handler));
    return id;
}

bool SignalHandlers::remove(int handler_id)
{
    VERIFY(handler_id != 0);
    if (m_calling_handlers) {
        auto it = m_handlers.find(handler_id);
        if (it != m_handlers.end()) {
            // Mark pending remove
            m_handlers_pending.set(handler_id, {});
            return true;
        }
        it = m_handlers_pending.find(handler_id);
        if (it != m_handlers_pending.end()) {
            if (!it->value)
                return false; // already was marked as deleted
            it->value = nullptr;
            return true;
        }
        return false;
    }
    return m_handlers.remove(handler_id);
}

void EventLoopManagerUnix::handle_signal(int signal_number)
{
    VERIFY(signal_number != 0);
    auto& thread_data = ThreadData::the();
    // We MUST check if the current pid still matches, because there
    // is a window between fork() and exec() where a signal delivered
    // to our fork could be inadvertently routed to the parent process!
    if (getpid() == thread_data.pid) {
        int nwritten = write(thread_data.wake_pipe_fds[1], &signal_number, sizeof(signal_number));
        if (nwritten < 0) {
            perror("EventLoopImplementationUnix::register_signal: write");
            VERIFY_NOT_REACHED();
        }
    } else {
        // We're a fork who received a signal, reset thread_data.pid.
        thread_data.pid = getpid();
    }
}

int EventLoopManagerUnix::register_signal(int signal_number, Function<void(int)> handler)
{
    VERIFY(signal_number != 0);
    auto& info = *signals_info();
    auto handlers = info.signal_handlers.find(signal_number);
    if (handlers == info.signal_handlers.end()) {
        auto signal_handlers = adopt_ref(*new SignalHandlers(signal_number, EventLoopManagerUnix::handle_signal));
        auto handler_id = signal_handlers->add(move(handler));
        info.signal_handlers.set(signal_number, move(signal_handlers));
        return handler_id;
    } else {
        return handlers->value->add(move(handler));
    }
}

void EventLoopManagerUnix::unregister_signal(int handler_id)
{
    VERIFY(handler_id != 0);
    int remove_signal_number = 0;
    auto& info = *signals_info();
    for (auto& h : info.signal_handlers) {
        auto& handlers = *h.value;
        if (handlers.remove(handler_id)) {
            if (handlers.is_empty())
                remove_signal_number = handlers.m_signal_number;
            break;
        }
    }
    if (remove_signal_number != 0)
        info.signal_handlers.remove(remove_signal_number);
}

int EventLoopManagerUnix::register_timer(Object& object, int milliseconds, bool should_reload, TimerShouldFireWhenNotVisible fire_when_not_visible)
{
    VERIFY(milliseconds >= 0);
    auto& thread_data = ThreadData::the();
    auto timer = make<EventLoopTimer>();
    timer->owner = object;
    timer->interval = Time::from_milliseconds(milliseconds);
    timer->reload(Time::now_monotonic_coarse());
    timer->should_reload = should_reload;
    timer->fire_when_not_visible = fire_when_not_visible;
    int timer_id = thread_data.id_allocator.allocate();
    timer->timer_id = timer_id;
    thread_data.timers.set(timer_id, move(timer));
    return timer_id;
}

bool EventLoopManagerUnix::unregister_timer(int timer_id)
{
    auto& thread_data = ThreadData::the();
    thread_data.id_allocator.deallocate(timer_id);
    return thread_data.timers.remove(timer_id);
}

void EventLoopManagerUnix::register_notifier(Notifier& notifier)
{
    ThreadData::the().notifiers.set(&notifier);
}

void EventLoopManagerUnix::unregister_notifier(Notifier& notifier)
{
    ThreadData::the().notifiers.remove(&notifier);
}

void EventLoopManagerUnix::did_post_event()
{
}

EventLoopManagerUnix::~EventLoopManagerUnix() = default;

NonnullOwnPtr<EventLoopImplementation> EventLoopManagerUnix::make_implementation()
{
    return adopt_own(*new EventLoopImplementationUnix);
}

}