1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
|
/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Mițca Dumitru <dumitru0mitca@gmail.com>
* Copyright (c) 2022, the SerenityOS developers.
* Copyright (c) 2022, Leon Albrecht <leon.a@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/BuiltinWrappers.h>
#include <AK/ExtraMathConstants.h>
#include <AK/FloatingPoint.h>
#if !ARCH(AARCH64)
# include <AK/FPControl.h>
#endif
#include <AK/Math.h>
#include <AK/Platform.h>
#include <AK/StdLibExtras.h>
#include <assert.h>
#include <fenv.h>
#include <math.h>
#include <stdint.h>
#if defined(AK_COMPILER_CLANG)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdouble-promotion"
#endif
template<size_t>
constexpr double e_to_power();
template<>
constexpr double e_to_power<0>() { return 1; }
template<size_t exponent>
constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
template<size_t>
constexpr size_t factorial();
template<>
constexpr size_t factorial<0>() { return 1; }
template<size_t value>
constexpr size_t factorial() { return value * factorial<value - 1>(); }
template<size_t>
constexpr size_t product_even();
template<>
constexpr size_t product_even<2>() { return 2; }
template<size_t value>
constexpr size_t product_even() { return value * product_even<value - 2>(); }
template<size_t>
constexpr size_t product_odd();
template<>
constexpr size_t product_odd<1>() { return 1; }
template<size_t value>
constexpr size_t product_odd() { return value * product_odd<value - 2>(); }
enum class RoundingMode {
ToZero = FE_TOWARDZERO,
Up = FE_UPWARD,
Down = FE_DOWNWARD,
ToEven = FE_TONEAREST
};
// This is much branchier than it really needs to be
template<typename FloatType>
static FloatType internal_to_integer(FloatType x, RoundingMode rounding_mode)
{
if (!isfinite(x))
return x;
using Extractor = FloatExtractor<decltype(x)>;
Extractor extractor;
extractor.d = x;
auto unbiased_exponent = extractor.exponent - Extractor::exponent_bias;
bool has_half_fraction = false;
bool has_nonhalf_fraction = false;
if (unbiased_exponent < 0) {
// it was easier to special case [0..1) as it saves us from
// handling subnormals, underflows, etc
if (unbiased_exponent == -1) {
has_half_fraction = true;
}
has_nonhalf_fraction = unbiased_exponent < -1 || extractor.mantissa != 0;
extractor.mantissa = 0;
extractor.exponent = 0;
} else {
if (unbiased_exponent >= Extractor::mantissa_bits)
return x;
auto dead_bitcount = Extractor::mantissa_bits - unbiased_exponent;
auto dead_mask = (1ull << dead_bitcount) - 1;
auto dead_bits = extractor.mantissa & dead_mask;
extractor.mantissa &= ~dead_mask;
auto nonhalf_fraction_mask = dead_mask >> 1;
has_nonhalf_fraction = (dead_bits & nonhalf_fraction_mask) != 0;
has_half_fraction = (dead_bits & ~nonhalf_fraction_mask) != 0;
}
bool should_round = false;
switch (rounding_mode) {
case RoundingMode::ToEven:
should_round = has_half_fraction;
break;
case RoundingMode::Up:
if (!extractor.sign)
should_round = has_nonhalf_fraction || has_half_fraction;
break;
case RoundingMode::Down:
if (extractor.sign)
should_round = has_nonhalf_fraction || has_half_fraction;
break;
case RoundingMode::ToZero:
break;
}
if (should_round) {
// We could do this ourselves, but this saves us from manually
// handling overflow.
if (extractor.sign)
extractor.d -= static_cast<FloatType>(1.0);
else
extractor.d += static_cast<FloatType>(1.0);
}
return extractor.d;
}
// This is much branchier than it really needs to be
template<typename FloatType>
static FloatType internal_nextafter(FloatType x, bool up)
{
if (!isfinite(x))
return x;
using Extractor = FloatExtractor<decltype(x)>;
Extractor extractor;
extractor.d = x;
if (x == 0) {
if (!extractor.sign) {
extractor.mantissa = 1;
extractor.sign = !up;
return extractor.d;
}
if (up) {
extractor.sign = false;
extractor.mantissa = 1;
return extractor.d;
}
extractor.mantissa = 1;
extractor.sign = up != extractor.sign;
return extractor.d;
}
if (up != extractor.sign) {
extractor.mantissa++;
if (!extractor.mantissa) {
// no need to normalize the mantissa as we just hit a power
// of two.
extractor.exponent++;
if (extractor.exponent == Extractor::exponent_max) {
extractor.exponent = Extractor::exponent_max - 1;
extractor.mantissa = Extractor::mantissa_max;
}
}
return extractor.d;
}
if (!extractor.mantissa) {
if (extractor.exponent) {
extractor.exponent--;
extractor.mantissa = Extractor::mantissa_max;
} else {
extractor.d = 0;
}
return extractor.d;
}
extractor.mantissa--;
if (extractor.mantissa != Extractor::mantissa_max)
return extractor.d;
if (extractor.exponent) {
extractor.exponent--;
// normalize
extractor.mantissa <<= 1;
} else {
if (extractor.sign) {
// Negative infinity
extractor.mantissa = 0;
extractor.exponent = Extractor::exponent_max;
}
}
return extractor.d;
}
template<typename FloatT>
static int internal_ilogb(FloatT x) NOEXCEPT
{
if (x == 0)
return FP_ILOGB0;
if (isnan(x))
return FP_ILOGNAN;
if (!isfinite(x))
return INT_MAX;
using Extractor = FloatExtractor<FloatT>;
Extractor extractor;
extractor.d = x;
return (int)extractor.exponent - Extractor::exponent_bias;
}
template<typename FloatT>
static FloatT internal_modf(FloatT x, FloatT* intpart) NOEXCEPT
{
FloatT integer_part = internal_to_integer(x, RoundingMode::ToZero);
*intpart = integer_part;
auto fraction = x - integer_part;
if (signbit(fraction) != signbit(x))
fraction = -fraction;
return fraction;
}
template<typename FloatT>
static FloatT internal_scalbn(FloatT x, int exponent) NOEXCEPT
{
if (x == 0 || !isfinite(x) || isnan(x) || exponent == 0)
return x;
using Extractor = FloatExtractor<FloatT>;
Extractor extractor;
extractor.d = x;
if (extractor.exponent != 0) {
extractor.exponent = clamp((int)extractor.exponent + exponent, 0, (int)Extractor::exponent_max);
return extractor.d;
}
unsigned leading_mantissa_zeroes = extractor.mantissa == 0 ? 32 : count_leading_zeroes(extractor.mantissa);
int shift = min((int)leading_mantissa_zeroes, exponent);
exponent = max(exponent - shift, 0);
extractor.exponent <<= shift;
extractor.exponent = exponent + 1;
return extractor.d;
}
template<typename FloatT>
static FloatT internal_copysign(FloatT x, FloatT y) NOEXCEPT
{
using Extractor = FloatExtractor<FloatT>;
Extractor ex, ey;
ex.d = x;
ey.d = y;
ex.sign = ey.sign;
return ex.d;
}
template<typename FloatT>
static FloatT internal_gamma(FloatT x) NOEXCEPT
{
if (isnan(x))
return (FloatT)NAN;
if (x == (FloatT)0.0)
return signbit(x) ? (FloatT)-INFINITY : (FloatT)INFINITY;
if (x < (FloatT)0 && (rintl(x) == x || isinf(x)))
return (FloatT)NAN;
if (isinf(x))
return (FloatT)INFINITY;
using Extractor = FloatExtractor<FloatT>;
// These constants were obtained through use of WolframAlpha
constexpr long long max_integer_whose_factorial_fits = (Extractor::mantissa_bits == FloatExtractor<long double>::mantissa_bits ? 20 : (Extractor::mantissa_bits == FloatExtractor<double>::mantissa_bits ? 18 : (Extractor::mantissa_bits == FloatExtractor<float>::mantissa_bits ? 10 : 0)));
static_assert(max_integer_whose_factorial_fits != 0, "internal_gamma needs to be aware of the integer factorial that fits in this floating point type.");
if ((int)x == x && x <= max_integer_whose_factorial_fits + 1) {
long long result = 1;
for (long long cursor = 2; cursor < (long long)x; cursor++)
result *= cursor;
return (FloatT)result;
}
// Stirling approximation
return sqrtl(2.0 * M_PIl / static_cast<long double>(x)) * powl(static_cast<long double>(x) / M_El, static_cast<long double>(x));
}
extern "C" {
float nanf(char const* s) NOEXCEPT
{
return __builtin_nanf(s);
}
double nan(char const* s) NOEXCEPT
{
return __builtin_nan(s);
}
long double nanl(char const* s) NOEXCEPT
{
return __builtin_nanl(s);
}
#define MAKE_AK_BACKED1(name) \
long double name##l(long double arg) NOEXCEPT \
{ \
return AK::name<long double>(arg); \
} \
double name(double arg) NOEXCEPT \
{ \
return AK::name<double>(arg); \
} \
float name##f(float arg) NOEXCEPT \
{ \
return AK::name<float>(arg); \
}
#define MAKE_AK_BACKED2(name) \
long double name##l(long double arg1, long double arg2) NOEXCEPT \
{ \
return AK::name<long double>(arg1, arg2); \
} \
double name(double arg1, double arg2) NOEXCEPT \
{ \
return AK::name<double>(arg1, arg2); \
} \
float name##f(float arg1, float arg2) NOEXCEPT \
{ \
return AK::name<float>(arg1, arg2); \
}
MAKE_AK_BACKED1(sin);
MAKE_AK_BACKED1(cos);
MAKE_AK_BACKED1(tan);
MAKE_AK_BACKED1(asin);
MAKE_AK_BACKED1(acos);
MAKE_AK_BACKED1(atan);
MAKE_AK_BACKED1(sinh);
MAKE_AK_BACKED1(cosh);
MAKE_AK_BACKED1(tanh);
MAKE_AK_BACKED1(asinh);
MAKE_AK_BACKED1(acosh);
MAKE_AK_BACKED1(atanh);
MAKE_AK_BACKED1(sqrt);
MAKE_AK_BACKED1(cbrt);
MAKE_AK_BACKED1(log);
MAKE_AK_BACKED1(log2);
MAKE_AK_BACKED1(log10);
MAKE_AK_BACKED1(exp);
MAKE_AK_BACKED1(exp2);
MAKE_AK_BACKED1(fabs);
MAKE_AK_BACKED2(atan2);
MAKE_AK_BACKED2(hypot);
MAKE_AK_BACKED2(fmod);
MAKE_AK_BACKED2(pow);
MAKE_AK_BACKED2(remainder);
long double truncl(long double x) NOEXCEPT
{
#if !ARCH(AARCH64)
if (fabsl(x) < LONG_LONG_MAX) {
// This is 1.6 times faster than the implementation using the "internal_to_integer"
// helper (on x86_64)
// https://quick-bench.com/q/xBmxuY8am9qibSYVna90Y6PIvqA
u64 temp;
asm(
"fisttpq %[temp]\n"
"fildq %[temp]"
: "+t"(x)
: [temp] "m"(temp));
return x;
}
#endif
return internal_to_integer(x, RoundingMode::ToZero);
}
double trunc(double x) NOEXCEPT
{
#if !ARCH(AARCH64)
if (fabs(x) < LONG_LONG_MAX) {
u64 temp;
asm(
"fisttpq %[temp]\n"
"fildq %[temp]"
: "+t"(x)
: [temp] "m"(temp));
return x;
}
#endif
return internal_to_integer(x, RoundingMode::ToZero);
}
float truncf(float x) NOEXCEPT
{
#if !ARCH(AARCH64)
if (fabsf(x) < LONG_LONG_MAX) {
u64 temp;
asm(
"fisttpq %[temp]\n"
"fildq %[temp]"
: "+t"(x)
: [temp] "m"(temp));
return x;
}
#endif
return internal_to_integer(x, RoundingMode::ToZero);
}
long double rintl(long double value)
{
#if ARCH(AARCH64)
(void)value;
TODO_AARCH64();
#else
long double res;
asm(
"frndint\n"
: "=t"(res)
: "0"(value));
return res;
#endif
}
double rint(double value)
{
#if ARCH(AARCH64)
(void)value;
TODO_AARCH64();
#else
double res;
asm(
"frndint\n"
: "=t"(res)
: "0"(value));
return res;
#endif
}
float rintf(float value)
{
#if ARCH(AARCH64)
(void)value;
TODO_AARCH64();
#else
float res;
asm(
"frndint\n"
: "=t"(res)
: "0"(value));
return res;
#endif
}
long lrintl(long double value)
{
#if ARCH(AARCH64)
(void)value;
TODO_AARCH64();
#else
long res;
asm(
"fistpl %0\n"
: "+m"(res)
: "t"(value)
: "st");
return res;
#endif
}
long lrint(double value)
{
#if ARCH(AARCH64)
(void)value;
TODO_AARCH64();
#else
long res;
asm(
"fistpl %0\n"
: "+m"(res)
: "t"(value)
: "st");
return res;
#endif
}
long lrintf(float value)
{
#if ARCH(AARCH64)
(void)value;
TODO_AARCH64();
#else
long res;
asm(
"fistpl %0\n"
: "+m"(res)
: "t"(value)
: "st");
return res;
#endif
}
long long llrintl(long double value)
{
#if ARCH(AARCH64)
(void)value;
TODO_AARCH64();
#else
long long res;
asm(
"fistpq %0\n"
: "+m"(res)
: "t"(value)
: "st");
return res;
#endif
}
long long llrint(double value)
{
#if ARCH(AARCH64)
(void)value;
TODO_AARCH64();
#else
long long res;
asm(
"fistpq %0\n"
: "+m"(res)
: "t"(value)
: "st");
return res;
#endif
}
long long llrintf(float value)
{
#if ARCH(AARCH64)
(void)value;
TODO_AARCH64();
#else
long long res;
asm(
"fistpq %0\n"
: "+m"(res)
: "t"(value)
: "st");
return res;
#endif
}
// On systems where FLT_RADIX == 2, ldexp is equivalent to scalbn
long double ldexpl(long double x, int exp) NOEXCEPT
{
return internal_scalbn(x, exp);
}
double ldexp(double x, int exp) NOEXCEPT
{
return internal_scalbn(x, exp);
}
float ldexpf(float x, int exp) NOEXCEPT
{
return internal_scalbn(x, exp);
}
[[maybe_unused]] static long double ampsin(long double angle) NOEXCEPT
{
long double looped_angle = fmodl(M_PI + angle, M_TAU) - M_PI;
long double looped_angle_squared = looped_angle * looped_angle;
long double quadratic_term;
if (looped_angle > 0) {
quadratic_term = -looped_angle_squared;
} else {
quadratic_term = looped_angle_squared;
}
long double linear_term = M_PI * looped_angle;
return quadratic_term + linear_term;
}
int ilogbl(long double x) NOEXCEPT
{
return internal_ilogb(x);
}
int ilogb(double x) NOEXCEPT
{
return internal_ilogb(x);
}
int ilogbf(float x) NOEXCEPT
{
return internal_ilogb(x);
}
long double logbl(long double x) NOEXCEPT
{
return ilogbl(x);
}
double logb(double x) NOEXCEPT
{
return ilogb(x);
}
float logbf(float x) NOEXCEPT
{
return ilogbf(x);
}
double frexp(double x, int* exp) NOEXCEPT
{
*exp = (x == 0) ? 0 : (1 + ilogb(x));
return scalbn(x, -(*exp));
}
float frexpf(float x, int* exp) NOEXCEPT
{
*exp = (x == 0) ? 0 : (1 + ilogbf(x));
return scalbnf(x, -(*exp));
}
long double frexpl(long double x, int* exp) NOEXCEPT
{
*exp = (x == 0) ? 0 : (1 + ilogbl(x));
return scalbnl(x, -(*exp));
}
#if !(ARCH(X86_64))
double round(double value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode::ToEven);
}
float roundf(float value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode::ToEven);
}
long double roundl(long double value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode::ToEven);
}
long lroundf(float value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode::ToEven);
}
long lround(double value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode::ToEven);
}
long lroundl(long double value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode::ToEven);
}
long long llroundf(float value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode::ToEven);
}
long long llround(double value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode::ToEven);
}
long long llroundd(long double value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode::ToEven);
}
float floorf(float value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode::Down);
}
double floor(double value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode::Down);
}
long double floorl(long double value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode::Down);
}
float ceilf(float value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode::Up);
}
double ceil(double value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode::Up);
}
long double ceill(long double value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode::Up);
}
#else
double round(double x) NOEXCEPT
{
// Note: This is break-tie-away-from-zero, so not the hw's understanding of
// "nearest", which would be towards even.
if (x == 0.)
return x;
if (x > 0.)
return floor(x + .5);
return ceil(x - .5);
}
float roundf(float x) NOEXCEPT
{
if (x == 0.f)
return x;
if (x > 0.f)
return floorf(x + .5f);
return ceilf(x - .5f);
}
long double roundl(long double x) NOEXCEPT
{
if (x == 0.L)
return x;
if (x > 0.L)
return floorl(x + .5L);
return ceill(x - .5L);
}
long lroundf(float value) NOEXCEPT
{
return static_cast<long>(roundf(value));
}
long lround(double value) NOEXCEPT
{
return static_cast<long>(round(value));
}
long lroundl(long double value) NOEXCEPT
{
return static_cast<long>(roundl(value));
}
long long llroundf(float value) NOEXCEPT
{
return static_cast<long long>(roundf(value));
}
long long llround(double value) NOEXCEPT
{
return static_cast<long long>(round(value));
}
long long llroundd(long double value) NOEXCEPT
{
return static_cast<long long>(roundl(value));
}
float floorf(float value) NOEXCEPT
{
AK::X87RoundingModeScope scope { AK::RoundingMode::DOWN };
asm("frndint"
: "+t"(value));
return value;
}
double floor(double value) NOEXCEPT
{
AK::X87RoundingModeScope scope { AK::RoundingMode::DOWN };
asm("frndint"
: "+t"(value));
return value;
}
long double floorl(long double value) NOEXCEPT
{
AK::X87RoundingModeScope scope { AK::RoundingMode::DOWN };
asm("frndint"
: "+t"(value));
return value;
}
float ceilf(float value) NOEXCEPT
{
AK::X87RoundingModeScope scope { AK::RoundingMode::UP };
asm("frndint"
: "+t"(value));
return value;
}
double ceil(double value) NOEXCEPT
{
AK::X87RoundingModeScope scope { AK::RoundingMode::UP };
asm("frndint"
: "+t"(value));
return value;
}
long double ceill(long double value) NOEXCEPT
{
AK::X87RoundingModeScope scope { AK::RoundingMode::UP };
asm("frndint"
: "+t"(value));
return value;
}
#endif
long double modfl(long double x, long double* intpart) NOEXCEPT
{
return internal_modf(x, intpart);
}
double modf(double x, double* intpart) NOEXCEPT
{
return internal_modf(x, intpart);
}
float modff(float x, float* intpart) NOEXCEPT
{
return internal_modf(x, intpart);
}
double gamma(double x) NOEXCEPT
{
// Stirling approximation
return sqrt(2.0 * M_PI / x) * pow(x / M_E, x);
}
long double tgammal(long double value) NOEXCEPT
{
return internal_gamma(value);
}
double tgamma(double value) NOEXCEPT
{
return internal_gamma(value);
}
float tgammaf(float value) NOEXCEPT
{
return internal_gamma(value);
}
int signgam = 0;
long double lgammal(long double value) NOEXCEPT
{
return lgammal_r(value, &signgam);
}
double lgamma(double value) NOEXCEPT
{
return lgamma_r(value, &signgam);
}
float lgammaf(float value) NOEXCEPT
{
return lgammaf_r(value, &signgam);
}
long double lgammal_r(long double value, int* sign) NOEXCEPT
{
if (value == 1.0 || value == 2.0)
return 0.0;
if (isinf(value) || value == 0.0)
return INFINITY;
long double result = logl(internal_gamma(value));
*sign = signbit(result) ? -1 : 1;
return result;
}
double lgamma_r(double value, int* sign) NOEXCEPT
{
if (value == 1.0 || value == 2.0)
return 0.0;
if (isinf(value) || value == 0.0)
return INFINITY;
double result = log(internal_gamma(value));
*sign = signbit(result) ? -1 : 1;
return result;
}
float lgammaf_r(float value, int* sign) NOEXCEPT
{
if (value == 1.0f || value == 2.0f)
return 0.0;
if (isinf(value) || value == 0.0f)
return INFINITY;
float result = logf(internal_gamma(value));
*sign = signbit(result) ? -1 : 1;
return result;
}
long double expm1l(long double x) NOEXCEPT
{
return expl(x) - 1;
}
double expm1(double x) NOEXCEPT
{
return exp(x) - 1;
}
float expm1f(float x) NOEXCEPT
{
return expf(x) - 1;
}
long double log1pl(long double x) NOEXCEPT
{
return logl(1 + x);
}
double log1p(double x) NOEXCEPT
{
return log(1 + x);
}
float log1pf(float x) NOEXCEPT
{
return logf(1 + x);
}
long double erfl(long double x) NOEXCEPT
{
// algorithm taken from Abramowitz and Stegun (no. 26.2.17)
long double t = 1 / (1 + 0.47047l * fabsl(x));
long double poly = t * (0.3480242l + t * (-0.958798l + t * 0.7478556l));
long double answer = 1 - poly * expl(-x * x);
if (x < 0)
return -answer;
return answer;
}
double erf(double x) NOEXCEPT
{
return (double)erfl(x);
}
float erff(float x) NOEXCEPT
{
return (float)erf(x);
}
long double erfcl(long double x) NOEXCEPT
{
return 1 - erfl(x);
}
double erfc(double x) NOEXCEPT
{
return 1 - erf(x);
}
float erfcf(float x) NOEXCEPT
{
return 1 - erff(x);
}
double nextafter(double x, double target) NOEXCEPT
{
if (x == target)
return target;
return internal_nextafter(x, target >= x);
}
float nextafterf(float x, float target) NOEXCEPT
{
if (x == target)
return target;
return internal_nextafter(x, target >= x);
}
long double nextafterl(long double x, long double target) NOEXCEPT
{
return internal_nextafter(x, target >= x);
}
double nexttoward(double x, long double target) NOEXCEPT
{
if (x == target)
return target;
return internal_nextafter(x, target >= x);
}
float nexttowardf(float x, long double target) NOEXCEPT
{
if (x == target)
return target;
return internal_nextafter(x, target >= x);
}
long double nexttowardl(long double x, long double target) NOEXCEPT
{
if (x == target)
return target;
return internal_nextafter(x, target >= x);
}
float copysignf(float x, float y) NOEXCEPT
{
return internal_copysign(x, y);
}
double copysign(double x, double y) NOEXCEPT
{
return internal_copysign(x, y);
}
long double copysignl(long double x, long double y) NOEXCEPT
{
return internal_copysign(x, y);
}
float scalbnf(float x, int exponent) NOEXCEPT
{
return internal_scalbn(x, exponent);
}
double scalbn(double x, int exponent) NOEXCEPT
{
return internal_scalbn(x, exponent);
}
long double scalbnl(long double x, int exponent) NOEXCEPT
{
return internal_scalbn(x, exponent);
}
float scalbnlf(float x, long exponent) NOEXCEPT
{
return internal_scalbn(x, exponent);
}
double scalbln(double x, long exponent) NOEXCEPT
{
return internal_scalbn(x, exponent);
}
long double scalblnl(long double x, long exponent) NOEXCEPT
{
return internal_scalbn(x, exponent);
}
long double fmaxl(long double x, long double y) NOEXCEPT
{
if (isnan(x))
return y;
if (isnan(y))
return x;
return x > y ? x : y;
}
double fmax(double x, double y) NOEXCEPT
{
if (isnan(x))
return y;
if (isnan(y))
return x;
return x > y ? x : y;
}
float fmaxf(float x, float y) NOEXCEPT
{
if (isnan(x))
return y;
if (isnan(y))
return x;
return x > y ? x : y;
}
long double fminl(long double x, long double y) NOEXCEPT
{
if (isnan(x))
return y;
if (isnan(y))
return x;
return x < y ? x : y;
}
double fmin(double x, double y) NOEXCEPT
{
if (isnan(x))
return y;
if (isnan(y))
return x;
return x < y ? x : y;
}
float fminf(float x, float y) NOEXCEPT
{
if (isnan(x))
return y;
if (isnan(y))
return x;
return x < y ? x : y;
}
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/fma.html
long double fmal(long double x, long double y, long double z) NOEXCEPT
{
return (x * y) + z;
}
double fma(double x, double y, double z) NOEXCEPT
{
return (x * y) + z;
}
float fmaf(float x, float y, float z) NOEXCEPT
{
return (x * y) + z;
}
long double nearbyintl(long double value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode { fegetround() });
}
double nearbyint(double value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode { fegetround() });
}
float nearbyintf(float value) NOEXCEPT
{
return internal_to_integer(value, RoundingMode { fegetround() });
}
}
#if defined(AK_COMPILER_CLANG)
# pragma clang diagnostic pop
#endif
|