1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, kleines Filmröllchen <malu.bertsch@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Debug.h>
#include <AK/NumericLimits.h>
#include <AK/OwnPtr.h>
#include <LibAudio/Buffer.h>
#include <LibAudio/WavLoader.h>
#include <LibCore/File.h>
#include <LibCore/IODeviceStreamReader.h>
namespace Audio {
static constexpr size_t maximum_wav_size = 1 * GiB; // FIXME: is there a more appropriate size limit?
WavLoaderPlugin::WavLoaderPlugin(const StringView& path)
: m_file(Core::File::construct(path))
{
if (!m_file->open(Core::OpenMode::ReadOnly)) {
m_error_string = String::formatted("Can't open file: {}", m_file->error_string());
return;
}
valid = parse_header();
if (!valid)
return;
m_resampler = make<ResampleHelper>(m_sample_rate, 44100);
}
WavLoaderPlugin::WavLoaderPlugin(const ByteBuffer& buffer)
{
m_stream = make<InputMemoryStream>(buffer);
if (!m_stream) {
m_error_string = String::formatted("Can't open memory stream");
return;
}
valid = parse_header();
if (!valid)
return;
m_resampler = make<ResampleHelper>(m_sample_rate, 44100);
}
bool WavLoaderPlugin::sniff()
{
return valid;
}
RefPtr<Buffer> WavLoaderPlugin::get_more_samples(size_t max_bytes_to_read_from_input)
{
dbgln_if(AWAVLOADER_DEBUG, "Read {} bytes WAV with num_channels {} sample rate {}, "
"bits per sample {}, sample format {}",
max_bytes_to_read_from_input, m_num_channels,
m_sample_rate, pcm_bits_per_sample(m_sample_format), sample_format_name(m_sample_format));
size_t samples_to_read = static_cast<int>(max_bytes_to_read_from_input) / (m_num_channels * (pcm_bits_per_sample(m_sample_format) / 8));
RefPtr<Buffer> buffer;
if (m_file) {
auto raw_samples = m_file->read(max_bytes_to_read_from_input);
if (raw_samples.is_empty()) {
return nullptr;
}
buffer = Buffer::from_pcm_data(raw_samples, *m_resampler, m_num_channels, m_sample_format);
} else {
buffer = Buffer::from_pcm_stream(*m_stream, *m_resampler, m_num_channels, m_sample_format, samples_to_read);
}
//Buffer contains normalized samples, but m_loaded_samples should contain the amount of actually loaded samples
m_loaded_samples += samples_to_read;
m_loaded_samples = min(m_total_samples, m_loaded_samples);
return buffer;
}
void WavLoaderPlugin::seek(const int position)
{
if (position < 0 || position > m_total_samples)
return;
m_loaded_samples = position;
size_t byte_position = position * m_num_channels * (pcm_bits_per_sample(m_sample_format) / 8);
if (m_file)
m_file->seek(byte_position);
else
m_stream->seek(byte_position);
}
void WavLoaderPlugin::reset()
{
seek(0);
}
bool WavLoaderPlugin::parse_header()
{
OwnPtr<Core::IODeviceStreamReader> file_stream;
bool ok = true;
if (m_file)
file_stream = make<Core::IODeviceStreamReader>(*m_file);
auto read_u8 = [&]() -> u8 {
u8 value;
if (m_file) {
*file_stream >> value;
if (file_stream->handle_read_failure())
ok = false;
} else {
*m_stream >> value;
if (m_stream->handle_any_error())
ok = false;
}
return value;
};
auto read_u16 = [&]() -> u16 {
u16 value;
if (m_file) {
*file_stream >> value;
if (file_stream->handle_read_failure())
ok = false;
} else {
*m_stream >> value;
if (m_stream->handle_any_error())
ok = false;
}
return value;
};
auto read_u32 = [&]() -> u32 {
u32 value;
if (m_file) {
*file_stream >> value;
if (file_stream->handle_read_failure())
ok = false;
} else {
*m_stream >> value;
if (m_stream->handle_any_error())
ok = false;
}
return value;
};
#define CHECK_OK(msg) \
do { \
if (!ok) { \
m_error_string = String::formatted("Parsing failed: {}", msg); \
return {}; \
} \
} while (0)
u32 riff = read_u32();
ok = ok && riff == 0x46464952; // "RIFF"
CHECK_OK("RIFF header");
u32 sz = read_u32();
ok = ok && sz < 1024 * 1024 * 1024; // arbitrary
CHECK_OK("File size");
u32 wave = read_u32();
ok = ok && wave == 0x45564157; // "WAVE"
CHECK_OK("WAVE header");
u32 fmt_id = read_u32();
ok = ok && fmt_id == 0x20746D66; // "FMT"
CHECK_OK("FMT header");
u32 fmt_size = read_u32();
ok = ok && fmt_size == 16;
CHECK_OK("FMT size");
u16 audio_format = read_u16();
CHECK_OK("Audio format"); // incomplete read check
ok = ok && (audio_format == WAVE_FORMAT_PCM || audio_format == WAVE_FORMAT_IEEE_FLOAT);
CHECK_OK("Audio format PCM/Float"); // value check
m_num_channels = read_u16();
ok = ok && (m_num_channels == 1 || m_num_channels == 2);
CHECK_OK("Channel count");
m_sample_rate = read_u32();
CHECK_OK("Sample rate");
read_u32();
CHECK_OK("Data rate");
read_u16();
CHECK_OK("Block size");
u16 bits_per_sample = read_u16();
CHECK_OK("Bits per sample"); // incomplete read check
if (audio_format == WAVE_FORMAT_PCM) {
ok = ok && (bits_per_sample == 8 || bits_per_sample == 16 || bits_per_sample == 24);
CHECK_OK("Bits per sample (PCM)"); // value check
// We only support 8-24 bit audio right now because other formats are uncommon
if (bits_per_sample == 8) {
m_sample_format = PcmSampleFormat::Uint8;
} else if (bits_per_sample == 16) {
m_sample_format = PcmSampleFormat::Int16;
} else if (bits_per_sample == 24) {
m_sample_format = PcmSampleFormat::Int24;
}
} else if (audio_format == WAVE_FORMAT_IEEE_FLOAT) {
ok = ok && (bits_per_sample == 32 || bits_per_sample == 64);
CHECK_OK("Bits per sample (Float)"); // value check
// Again, only the common 32 and 64 bit
if (bits_per_sample == 32) {
m_sample_format = PcmSampleFormat::Float32;
} else if (bits_per_sample == 64) {
m_sample_format = PcmSampleFormat::Float64;
}
}
dbgln_if(AWAVLOADER_DEBUG, "WAV format {} at {} bit, {} channels, rate {}Hz ",
sample_format_name(m_sample_format), pcm_bits_per_sample(m_sample_format), m_num_channels, m_sample_rate);
// Read chunks until we find DATA
bool found_data = false;
u32 data_sz = 0;
u8 search_byte = 0;
while (true) {
search_byte = read_u8();
CHECK_OK("Reading byte searching for data");
if (search_byte != 0x64) //D
continue;
search_byte = read_u8();
CHECK_OK("Reading next byte searching for data");
if (search_byte != 0x61) //A
continue;
u16 search_remaining = read_u16();
CHECK_OK("Reading remaining bytes searching for data");
if (search_remaining != 0x6174) //TA
continue;
data_sz = read_u32();
found_data = true;
break;
}
ok = ok && found_data;
CHECK_OK("Found no data chunk");
ok = ok && data_sz < maximum_wav_size;
CHECK_OK("Data was too large");
int bytes_per_sample = (bits_per_sample / 8) * m_num_channels;
m_total_samples = data_sz / bytes_per_sample;
return true;
}
ResampleHelper::ResampleHelper(double source, double target)
: m_ratio(source / target)
{
}
void ResampleHelper::process_sample(double sample_l, double sample_r)
{
m_last_sample_l = sample_l;
m_last_sample_r = sample_r;
m_current_ratio += 1;
}
bool ResampleHelper::read_sample(double& next_l, double& next_r)
{
if (m_current_ratio > 0) {
m_current_ratio -= m_ratio;
next_l = m_last_sample_l;
next_r = m_last_sample_r;
return true;
}
return false;
}
}
|