summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibAudio/MP3Loader.cpp
blob: 62e534d6de5f4c1131f2007cd216fd4037f75c2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
/*
 * Copyright (c) 2021, Arne Elster <arne@elster.li>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include "MP3Loader.h"
#include "MP3HuffmanTables.h"
#include "MP3Tables.h"
#include <AK/FixedArray.h>

namespace Audio {

DSP::MDCT<12> MP3LoaderPlugin::s_mdct_12;
DSP::MDCT<36> MP3LoaderPlugin::s_mdct_36;

MP3LoaderPlugin::MP3LoaderPlugin(NonnullOwnPtr<SeekableStream> stream)
    : LoaderPlugin(move(stream))
{
}

Result<NonnullOwnPtr<MP3LoaderPlugin>, LoaderError> MP3LoaderPlugin::create(StringView path)
{
    auto stream = LOADER_TRY(Core::Stream::BufferedFile::create(LOADER_TRY(Core::Stream::File::open(path, Core::Stream::OpenMode::Read))));
    auto loader = make<MP3LoaderPlugin>(move(stream));

    LOADER_TRY(loader->initialize());

    return loader;
}

Result<NonnullOwnPtr<MP3LoaderPlugin>, LoaderError> MP3LoaderPlugin::create(Bytes buffer)
{
    auto stream = LOADER_TRY(Core::Stream::FixedMemoryStream::construct(buffer));
    auto loader = make<MP3LoaderPlugin>(move(stream));

    LOADER_TRY(loader->initialize());

    return loader;
}

MaybeLoaderError MP3LoaderPlugin::initialize()
{
    m_bitstream = LOADER_TRY(BigEndianInputBitStream::construct(MaybeOwned<AK::Stream>(*m_stream)));

    TRY(synchronize());

    auto header = TRY(read_header());
    if (header.id != 1 || header.layer != 3)
        return LoaderError { LoaderError::Category::Format, "Only MPEG-1 layer 3 supported." };

    m_sample_rate = header.samplerate;
    m_num_channels = header.channel_count();
    m_loaded_samples = 0;

    TRY(build_seek_table());

    LOADER_TRY(m_stream->seek(0, SeekMode::SetPosition));

    return {};
}

MaybeLoaderError MP3LoaderPlugin::reset()
{
    TRY(seek(0));
    m_current_frame = {};
    m_current_frame_read = 0;
    m_synthesis_buffer = {};
    m_loaded_samples = 0;
    LOADER_TRY(m_bit_reservoir.discard(m_bit_reservoir.used_buffer_size()));
    m_bitstream->align_to_byte_boundary();
    return {};
}

MaybeLoaderError MP3LoaderPlugin::seek(int const position)
{
    for (auto const& seek_entry : m_seek_table) {
        if (seek_entry.get<1>() >= position) {
            LOADER_TRY(m_stream->seek(seek_entry.get<0>(), SeekMode::SetPosition));
            m_loaded_samples = seek_entry.get<1>();
            break;
        }
    }
    m_current_frame = {};
    m_current_frame_read = 0;
    m_synthesis_buffer = {};
    LOADER_TRY(m_bit_reservoir.discard(m_bit_reservoir.used_buffer_size()));
    m_bitstream->align_to_byte_boundary();
    return {};
}

LoaderSamples MP3LoaderPlugin::get_more_samples(size_t max_samples_to_read_from_input)
{
    FixedArray<Sample> samples = LOADER_TRY(FixedArray<Sample>::create(max_samples_to_read_from_input));

    size_t samples_to_read = max_samples_to_read_from_input;
    while (samples_to_read > 0) {
        if (!m_current_frame.has_value()) {
            auto maybe_frame = read_next_frame();
            if (maybe_frame.is_error()) {
                if (m_stream->is_eof()) {
                    return FixedArray<Sample> {};
                }
                return maybe_frame.release_error();
            }
            m_current_frame = maybe_frame.release_value();
            if (!m_current_frame.has_value())
                break;
            m_current_frame_read = 0;
        }

        bool const is_stereo = m_current_frame->header.channel_count() == 2;
        for (; m_current_frame_read < 576 && samples_to_read > 0; m_current_frame_read++) {
            auto const left_sample = m_current_frame->channels[0].granules[0].pcm[m_current_frame_read / 32][m_current_frame_read % 32];
            auto const right_sample = is_stereo ? m_current_frame->channels[1].granules[0].pcm[m_current_frame_read / 32][m_current_frame_read % 32] : left_sample;
            samples[samples.size() - samples_to_read] = Sample { left_sample, right_sample };
            samples_to_read--;
        }
        for (; m_current_frame_read < 1152 && samples_to_read > 0; m_current_frame_read++) {
            auto const left_sample = m_current_frame->channels[0].granules[1].pcm[(m_current_frame_read - 576) / 32][(m_current_frame_read - 576) % 32];
            auto const right_sample = is_stereo ? m_current_frame->channels[1].granules[1].pcm[(m_current_frame_read - 576) / 32][(m_current_frame_read - 576) % 32] : left_sample;
            samples[samples.size() - samples_to_read] = Sample { left_sample, right_sample };
            samples_to_read--;
        }
        if (m_current_frame_read == 1152) {
            m_current_frame = {};
        }
    }

    m_loaded_samples += samples.size();
    return samples;
}

MaybeLoaderError MP3LoaderPlugin::build_seek_table()
{
    int sample_count = 0;
    size_t frame_count = 0;
    m_seek_table.clear();

    m_bitstream->align_to_byte_boundary();

    while (!synchronize().is_error()) {
        auto const frame_pos = -2 + LOADER_TRY(m_stream->seek(0, SeekMode::FromCurrentPosition));

        auto error_or_header = read_header();
        if (error_or_header.is_error() || error_or_header.value().id != 1 || error_or_header.value().layer != 3) {
            continue;
        }
        frame_count++;
        sample_count += 1152;

        if (frame_count % 10 == 0)
            m_seek_table.append({ frame_pos, sample_count });

        LOADER_TRY(m_stream->seek(error_or_header.value().frame_size - 6, SeekMode::FromCurrentPosition));

        // TODO: This is just here to clear the bitstream buffer.
        // Bitstream should have a method to sync its state to the underlying stream.
        m_bitstream->align_to_byte_boundary();
    }
    m_total_samples = sample_count;
    return {};
}

ErrorOr<MP3::Header, LoaderError> MP3LoaderPlugin::read_header()
{
    MP3::Header header;
    header.id = LOADER_TRY(m_bitstream->read_bit());
    header.layer = MP3::Tables::LayerNumberLookup[LOADER_TRY(m_bitstream->read_bits(2))];
    if (header.layer <= 0)
        return LoaderError { LoaderError::Category::Format, m_loaded_samples, "Frame header contains invalid layer number." };
    header.protection_bit = LOADER_TRY(m_bitstream->read_bit());
    header.bitrate = MP3::Tables::BitratesPerLayerLookup[header.layer - 1][LOADER_TRY(m_bitstream->read_bits(4))];
    if (header.bitrate <= 0)
        return LoaderError { LoaderError::Category::Format, m_loaded_samples, "Frame header contains invalid bitrate." };
    header.samplerate = MP3::Tables::SampleratesLookup[LOADER_TRY(m_bitstream->read_bits(2))];
    if (header.samplerate <= 0)
        return LoaderError { LoaderError::Category::Format, m_loaded_samples, "Frame header contains invalid samplerate." };
    header.padding_bit = LOADER_TRY(m_bitstream->read_bit());
    header.private_bit = LOADER_TRY(m_bitstream->read_bit());
    header.mode = static_cast<MP3::Mode>(LOADER_TRY(m_bitstream->read_bits(2)));
    header.mode_extension = static_cast<MP3::ModeExtension>(LOADER_TRY(m_bitstream->read_bits(2)));
    header.copyright_bit = LOADER_TRY(m_bitstream->read_bit());
    header.original_bit = LOADER_TRY(m_bitstream->read_bit());
    header.emphasis = static_cast<MP3::Emphasis>(LOADER_TRY(m_bitstream->read_bits(2)));
    if (!header.protection_bit)
        header.crc16 = LOADER_TRY(m_bitstream->read_bits<u16>(16));
    header.frame_size = 144 * header.bitrate * 1000 / header.samplerate + header.padding_bit;
    header.slot_count = header.frame_size - ((header.channel_count() == 2 ? 32 : 17) + (header.protection_bit ? 0 : 2) + 4);
    return header;
}

MaybeLoaderError MP3LoaderPlugin::synchronize()
{
    size_t one_counter = 0;
    while (one_counter < 12 && !m_bitstream->is_eof()) {
        bool const bit = LOADER_TRY(m_bitstream->read_bit());
        one_counter = bit ? one_counter + 1 : 0;
        if (!bit) {
            m_bitstream->align_to_byte_boundary();
        }
    }
    if (one_counter != 12)
        return LoaderError { LoaderError::Category::Format, m_loaded_samples, "Failed to synchronize." };
    return {};
}

ErrorOr<MP3::MP3Frame, LoaderError> MP3LoaderPlugin::read_next_frame()
{
    // Note: This will spin until we find a correct frame, or we reach eof.
    //       In the second case, the error will bubble up from read_frame_data().
    while (true) {
        TRY(synchronize());
        MP3::Header header = TRY(read_header());
        if (header.id != 1 || header.layer != 3) {
            continue;
        }

        return read_frame_data(header);
    }
}

ErrorOr<MP3::MP3Frame, LoaderError> MP3LoaderPlugin::read_frame_data(MP3::Header const& header)
{
    MP3::MP3Frame frame { header };

    TRY(read_side_information(frame));

    auto maybe_buffer = ByteBuffer::create_uninitialized(header.slot_count);
    if (maybe_buffer.is_error())
        return LoaderError { LoaderError::Category::IO, m_loaded_samples, "Out of memory" };
    auto& buffer = maybe_buffer.value();

    size_t old_reservoir_size = m_bit_reservoir.used_buffer_size();
    LOADER_TRY(m_bitstream->read_entire_buffer(buffer));
    if (LOADER_TRY(m_bit_reservoir.write(buffer)) != header.slot_count)
        return LoaderError { LoaderError::Category::IO, m_loaded_samples, "Could not write frame into bit reservoir." };

    // If we don't have enough data in the reservoir to process this frame, skip it (but keep the data).
    if (old_reservoir_size < static_cast<size_t>(frame.main_data_begin))
        return frame;

    TRY(m_bit_reservoir.discard(old_reservoir_size - frame.main_data_begin));

    auto reservoir_stream = TRY(BigEndianInputBitStream::construct(MaybeOwned<AK::Stream>(m_bit_reservoir)));

    for (size_t granule_index = 0; granule_index < 2; granule_index++) {
        for (size_t channel_index = 0; channel_index < header.channel_count(); channel_index++) {
            size_t scale_factor_size = TRY(read_scale_factors(frame, *reservoir_stream, granule_index, channel_index));
            TRY(read_huffman_data(frame, *reservoir_stream, granule_index, channel_index, scale_factor_size));
            if (frame.channels[channel_index].granules[granule_index].block_type == MP3::BlockType::Short) {
                reorder_samples(frame.channels[channel_index].granules[granule_index], frame.header.samplerate);

                // Only reduce alias for lowest 2 bands as they're long.
                // Afaik this is not mentioned in the ISO spec, but it is addressed in the
                // changelog for the ISO compliance tests.
                if (frame.channels[channel_index].granules[granule_index].mixed_block_flag)
                    reduce_alias(frame.channels[channel_index].granules[granule_index], 36);
            } else {
                reduce_alias(frame.channels[channel_index].granules[granule_index]);
            }
        }

        if (header.mode == MP3::Mode::JointStereo) {
            process_stereo(frame, granule_index);
        }
    }

    for (size_t granule_index = 0; granule_index < 2; granule_index++) {
        for (size_t channel_index = 0; channel_index < header.channel_count(); channel_index++) {
            auto& granule = frame.channels[channel_index].granules[granule_index];

            for (size_t i = 0; i < 576; i += 18) {
                MP3::BlockType block_type = granule.block_type;
                if (i < 36 && granule.mixed_block_flag) {
                    // ISO/IEC 11172-3: if mixed_block_flag is set, the lowest two subbands are transformed with normal window.
                    block_type = MP3::BlockType::Normal;
                }

                Array<float, 36> output;
                transform_samples_to_time(granule.samples, i, output, block_type);

                int const subband_index = i / 18;
                for (size_t sample_index = 0; sample_index < 18; sample_index++) {
                    // overlap add
                    granule.filter_bank_input[subband_index][sample_index] = output[sample_index] + m_last_values[channel_index][subband_index][sample_index];
                    m_last_values[channel_index][subband_index][sample_index] = output[sample_index + 18];

                    // frequency inversion
                    if (subband_index % 2 == 1 && sample_index % 2 == 1)
                        granule.filter_bank_input[subband_index][sample_index] *= -1;
                }
            }
        }
    }

    Array<float, 32> in_samples;
    for (size_t channel_index = 0; channel_index < frame.header.channel_count(); channel_index++) {
        for (size_t granule_index = 0; granule_index < 2; granule_index++) {
            auto& granule = frame.channels[channel_index].granules[granule_index];
            for (size_t sample_index = 0; sample_index < 18; sample_index++) {
                for (size_t band_index = 0; band_index < 32; band_index++) {
                    in_samples[band_index] = granule.filter_bank_input[band_index][sample_index];
                }
                synthesis(m_synthesis_buffer[channel_index], in_samples, granule.pcm[sample_index]);
            }
        }
    }

    return frame;
}

MaybeLoaderError MP3LoaderPlugin::read_side_information(MP3::MP3Frame& frame)
{
    frame.main_data_begin = LOADER_TRY(m_bitstream->read_bits(9));

    if (frame.header.channel_count() == 1) {
        frame.private_bits = LOADER_TRY(m_bitstream->read_bits(5));
    } else {
        frame.private_bits = LOADER_TRY(m_bitstream->read_bits(3));
    }

    for (size_t channel_index = 0; channel_index < frame.header.channel_count(); channel_index++) {
        for (size_t scale_factor_selection_info_band = 0; scale_factor_selection_info_band < 4; scale_factor_selection_info_band++) {
            frame.channels[channel_index].scale_factor_selection_info[scale_factor_selection_info_band] = LOADER_TRY(m_bitstream->read_bit());
        }
    }

    for (size_t granule_index = 0; granule_index < 2; granule_index++) {
        for (size_t channel_index = 0; channel_index < frame.header.channel_count(); channel_index++) {
            auto& granule = frame.channels[channel_index].granules[granule_index];
            granule.part_2_3_length = LOADER_TRY(m_bitstream->read_bits(12));
            granule.big_values = LOADER_TRY(m_bitstream->read_bits(9));
            granule.global_gain = LOADER_TRY(m_bitstream->read_bits(8));
            granule.scalefac_compress = LOADER_TRY(m_bitstream->read_bits(4));
            granule.window_switching_flag = LOADER_TRY(m_bitstream->read_bit());
            if (granule.window_switching_flag) {
                granule.block_type = static_cast<MP3::BlockType>(LOADER_TRY(m_bitstream->read_bits(2)));
                granule.mixed_block_flag = LOADER_TRY(m_bitstream->read_bit());
                for (size_t region = 0; region < 2; region++)
                    granule.table_select[region] = LOADER_TRY(m_bitstream->read_bits(5));
                for (size_t window = 0; window < 3; window++)
                    granule.sub_block_gain[window] = LOADER_TRY(m_bitstream->read_bits(3));
                granule.region0_count = (granule.block_type == MP3::BlockType::Short && !granule.mixed_block_flag) ? 8 : 7;
                granule.region1_count = 36;
            } else {
                for (size_t region = 0; region < 3; region++)
                    granule.table_select[region] = LOADER_TRY(m_bitstream->read_bits(5));
                granule.region0_count = LOADER_TRY(m_bitstream->read_bits(4));
                granule.region1_count = LOADER_TRY(m_bitstream->read_bits(3));
            }
            granule.preflag = LOADER_TRY(m_bitstream->read_bit());
            granule.scalefac_scale = LOADER_TRY(m_bitstream->read_bit());
            granule.count1table_select = LOADER_TRY(m_bitstream->read_bit());
        }
    }
    return {};
}

// From ISO/IEC 11172-3 (2.4.3.4.7.1)
Array<float, 576> MP3LoaderPlugin::calculate_frame_exponents(MP3::MP3Frame const& frame, size_t granule_index, size_t channel_index)
{
    Array<float, 576> exponents;

    auto fill_band = [&exponents](float exponent, size_t start, size_t end) {
        for (size_t j = start; j <= end; j++) {
            exponents[j] = exponent;
        }
    };

    auto const& channel = frame.channels[channel_index];
    auto const& granule = frame.channels[channel_index].granules[granule_index];

    auto const scale_factor_bands = get_scalefactor_bands(granule, frame.header.samplerate);
    float const scale_factor_multiplier = granule.scalefac_scale ? 1 : 0.5;
    int const gain = granule.global_gain - 210;

    if (granule.block_type != MP3::BlockType::Short) {
        for (size_t band_index = 0; band_index < 22; band_index++) {
            float const exponent = gain / 4.0f - (scale_factor_multiplier * (channel.scale_factors[band_index] + granule.preflag * MP3::Tables::Pretab[band_index]));
            fill_band(AK::pow<float>(2.0, exponent), scale_factor_bands[band_index].start, scale_factor_bands[band_index].end);
        }
    } else {
        size_t band_index = 0;
        size_t sample_count = 0;

        if (granule.mixed_block_flag) {
            while (sample_count < 36) {
                float const exponent = gain / 4.0f - (scale_factor_multiplier * (channel.scale_factors[band_index] + granule.preflag * MP3::Tables::Pretab[band_index]));
                fill_band(AK::pow<float>(2.0, exponent), scale_factor_bands[band_index].start, scale_factor_bands[band_index].end);
                sample_count += scale_factor_bands[band_index].width;
                band_index++;
            }
        }

        float const gain0 = (gain - 8 * granule.sub_block_gain[0]) / 4.0;
        float const gain1 = (gain - 8 * granule.sub_block_gain[1]) / 4.0;
        float const gain2 = (gain - 8 * granule.sub_block_gain[2]) / 4.0;

        while (sample_count < 576 && band_index < scale_factor_bands.size()) {
            float const exponent0 = gain0 - (scale_factor_multiplier * channel.scale_factors[band_index + 0]);
            float const exponent1 = gain1 - (scale_factor_multiplier * channel.scale_factors[band_index + 1]);
            float const exponent2 = gain2 - (scale_factor_multiplier * channel.scale_factors[band_index + 2]);

            fill_band(AK::pow<float>(2.0, exponent0), scale_factor_bands[band_index + 0].start, scale_factor_bands[band_index + 0].end);
            sample_count += scale_factor_bands[band_index + 0].width;
            fill_band(AK::pow<float>(2.0, exponent1), scale_factor_bands[band_index + 1].start, scale_factor_bands[band_index + 1].end);
            sample_count += scale_factor_bands[band_index + 1].width;
            fill_band(AK::pow<float>(2.0, exponent2), scale_factor_bands[band_index + 2].start, scale_factor_bands[band_index + 2].end);
            sample_count += scale_factor_bands[band_index + 2].width;

            band_index += 3;
        }

        while (sample_count < 576)
            exponents[sample_count++] = 0;
    }
    return exponents;
}

ErrorOr<size_t, LoaderError> MP3LoaderPlugin::read_scale_factors(MP3::MP3Frame& frame, BigEndianInputBitStream& reservoir, size_t granule_index, size_t channel_index)
{
    auto& channel = frame.channels[channel_index];
    auto const& granule = channel.granules[granule_index];
    size_t band_index = 0;
    size_t bits_read = 0;

    if (granule.window_switching_flag && granule.block_type == MP3::BlockType::Short) {
        if (granule.mixed_block_flag) {
            for (size_t i = 0; i < 8; i++) {
                auto const bits = MP3::Tables::ScalefacCompressSlen1[granule.scalefac_compress];
                channel.scale_factors[band_index++] = TRY(reservoir.read_bits(bits));
                bits_read += bits;
            }
            for (size_t i = 3; i < 12; i++) {
                auto const bits = i <= 5 ? MP3::Tables::ScalefacCompressSlen1[granule.scalefac_compress] : MP3::Tables::ScalefacCompressSlen2[granule.scalefac_compress];
                channel.scale_factors[band_index++] = TRY(reservoir.read_bits(bits));
                channel.scale_factors[band_index++] = TRY(reservoir.read_bits(bits));
                channel.scale_factors[band_index++] = TRY(reservoir.read_bits(bits));
                bits_read += 3 * bits;
            }
        } else {
            for (size_t i = 0; i < 12; i++) {
                auto const bits = i <= 5 ? MP3::Tables::ScalefacCompressSlen1[granule.scalefac_compress] : MP3::Tables::ScalefacCompressSlen2[granule.scalefac_compress];
                channel.scale_factors[band_index++] = TRY(reservoir.read_bits(bits));
                channel.scale_factors[band_index++] = TRY(reservoir.read_bits(bits));
                channel.scale_factors[band_index++] = TRY(reservoir.read_bits(bits));
                bits_read += 3 * bits;
            }
        }
        channel.scale_factors[band_index++] = 0;
        channel.scale_factors[band_index++] = 0;
        channel.scale_factors[band_index++] = 0;
    } else {
        if ((channel.scale_factor_selection_info[0] == 0) || (granule_index == 0)) {
            for (band_index = 0; band_index < 6; band_index++) {
                auto const bits = MP3::Tables::ScalefacCompressSlen1[granule.scalefac_compress];
                channel.scale_factors[band_index] = TRY(reservoir.read_bits(bits));
                bits_read += bits;
            }
        }
        if ((channel.scale_factor_selection_info[1] == 0) || (granule_index == 0)) {
            for (band_index = 6; band_index < 11; band_index++) {
                auto const bits = MP3::Tables::ScalefacCompressSlen1[granule.scalefac_compress];
                channel.scale_factors[band_index] = TRY(reservoir.read_bits(bits));
                bits_read += bits;
            }
        }
        if ((channel.scale_factor_selection_info[2] == 0) || (granule_index == 0)) {
            for (band_index = 11; band_index < 16; band_index++) {
                auto const bits = MP3::Tables::ScalefacCompressSlen2[granule.scalefac_compress];
                channel.scale_factors[band_index] = TRY(reservoir.read_bits(bits));
                bits_read += bits;
            }
        }
        if ((channel.scale_factor_selection_info[3] == 0) || (granule_index == 0)) {
            for (band_index = 16; band_index < 21; band_index++) {
                auto const bits = MP3::Tables::ScalefacCompressSlen2[granule.scalefac_compress];
                channel.scale_factors[band_index] = TRY(reservoir.read_bits(bits));
                bits_read += bits;
            }
        }
        channel.scale_factors[21] = 0;
    }

    return bits_read;
}

MaybeLoaderError MP3LoaderPlugin::read_huffman_data(MP3::MP3Frame& frame, BigEndianInputBitStream& reservoir, size_t granule_index, size_t channel_index, size_t granule_bits_read)
{
    auto const exponents = calculate_frame_exponents(frame, granule_index, channel_index);
    auto& granule = frame.channels[channel_index].granules[granule_index];

    auto const scale_factor_bands = get_scalefactor_bands(granule, frame.header.samplerate);
    size_t const scale_factor_band_index1 = granule.region0_count + 1;
    size_t const scale_factor_band_index2 = min(scale_factor_bands.size() - 1, scale_factor_band_index1 + granule.region1_count + 1);

    bool const is_short_granule = granule.window_switching_flag && granule.block_type == MP3::BlockType::Short;
    size_t const region1_start = is_short_granule ? 36 : scale_factor_bands[scale_factor_band_index1].start;
    size_t const region2_start = is_short_granule ? 576 : scale_factor_bands[scale_factor_band_index2].start;

    auto requantize = [](int const sample, float const exponent) -> float {
        int const sign = sample < 0 ? -1 : 1;
        int const magnitude = AK::abs(sample);
        return sign * AK::pow<float>(static_cast<float>(magnitude), 4 / 3.0) * exponent;
    };

    size_t count = 0;

    for (; count < granule.big_values * 2; count += 2) {
        MP3::Tables::Huffman::HuffmanTreeXY const* tree = nullptr;

        if (count < region1_start) {
            tree = &MP3::Tables::Huffman::HuffmanTreesXY[granule.table_select[0]];
        } else if (count < region2_start) {
            tree = &MP3::Tables::Huffman::HuffmanTreesXY[granule.table_select[1]];
        } else {
            tree = &MP3::Tables::Huffman::HuffmanTreesXY[granule.table_select[2]];
        }

        if (!tree || tree->nodes.is_empty()) {
            return LoaderError { LoaderError::Category::Format, m_loaded_samples, "Frame references invalid huffman table." };
        }

        // Assumption: There's enough bits to read. 32 is just a placeholder for "unlimited".
        // There are no 32 bit long huffman codes in the tables.
        auto const entry = MP3::Tables::Huffman::huffman_decode(reservoir, tree->nodes, 32);
        granule_bits_read += entry.bits_read;
        if (!entry.code.has_value())
            return LoaderError { LoaderError::Category::Format, m_loaded_samples, "Frame contains invalid huffman data." };
        int x = entry.code->symbol.x;
        int y = entry.code->symbol.y;

        if (x == 15 && tree->linbits > 0) {
            x += LOADER_TRY(reservoir.read_bits(tree->linbits));
            granule_bits_read += tree->linbits;
        }
        if (x != 0) {
            if (LOADER_TRY(reservoir.read_bit()))
                x = -x;
            granule_bits_read++;
        }

        if (y == 15 && tree->linbits > 0) {
            y += LOADER_TRY(reservoir.read_bits(tree->linbits));
            granule_bits_read += tree->linbits;
        }
        if (y != 0) {
            if (LOADER_TRY(reservoir.read_bit()))
                y = -y;
            granule_bits_read++;
        }

        granule.samples[count + 0] = requantize(x, exponents[count + 0]);
        granule.samples[count + 1] = requantize(y, exponents[count + 1]);
    }

    Span<MP3::Tables::Huffman::HuffmanNode<MP3::Tables::Huffman::HuffmanVWXY> const> count1table = granule.count1table_select ? MP3::Tables::Huffman::TreeB : MP3::Tables::Huffman::TreeA;

    // count1 is not known. We have to read huffman encoded values
    // until we've exhausted the granule's bits. We know the size of
    // the granule from part2_3_length, which is the number of bits
    // used for scaleactors and huffman data (in the granule).
    while (granule_bits_read < granule.part_2_3_length && count <= 576 - 4) {
        auto const entry = MP3::Tables::Huffman::huffman_decode(reservoir, count1table, granule.part_2_3_length - granule_bits_read);
        granule_bits_read += entry.bits_read;
        if (!entry.code.has_value())
            return LoaderError { LoaderError::Category::Format, m_loaded_samples, "Frame contains invalid huffman data." };
        int v = entry.code->symbol.v;
        if (v != 0) {
            if (granule_bits_read >= granule.part_2_3_length)
                break;
            if (LOADER_TRY(reservoir.read_bit()))
                v = -v;
            granule_bits_read++;
        }
        int w = entry.code->symbol.w;
        if (w != 0) {
            if (granule_bits_read >= granule.part_2_3_length)
                break;
            if (LOADER_TRY(reservoir.read_bit()))
                w = -w;
            granule_bits_read++;
        }
        int x = entry.code->symbol.x;
        if (x != 0) {
            if (granule_bits_read >= granule.part_2_3_length)
                break;
            if (LOADER_TRY(reservoir.read_bit()))
                x = -x;
            granule_bits_read++;
        }
        int y = entry.code->symbol.y;
        if (y != 0) {
            if (granule_bits_read >= granule.part_2_3_length)
                break;
            if (LOADER_TRY(reservoir.read_bit()))
                y = -y;
            granule_bits_read++;
        }

        granule.samples[count + 0] = requantize(v, exponents[count + 0]);
        granule.samples[count + 1] = requantize(w, exponents[count + 1]);
        granule.samples[count + 2] = requantize(x, exponents[count + 2]);
        granule.samples[count + 3] = requantize(y, exponents[count + 3]);

        count += 4;
    }

    if (granule_bits_read > granule.part_2_3_length) {
        return LoaderError { LoaderError::Category::Format, m_loaded_samples, "Read too many bits from bit reservoir." };
    }

    for (size_t i = granule_bits_read; i < granule.part_2_3_length; i++) {
        LOADER_TRY(reservoir.read_bit());
    }

    return {};
}

void MP3LoaderPlugin::reorder_samples(MP3::Granule& granule, u32 sample_rate)
{
    float tmp[576] = {};
    size_t band_index = 0;
    size_t subband_index = 0;

    auto scale_factor_bands = get_scalefactor_bands(granule, sample_rate);

    if (granule.mixed_block_flag) {
        while (subband_index < 36) {
            for (size_t frequency_line_index = 0; frequency_line_index < scale_factor_bands[band_index].width; frequency_line_index++) {
                tmp[subband_index] = granule.samples[subband_index];
                subband_index++;
            }
            band_index++;
        }
    }

    while (subband_index < 576 && band_index <= 36) {
        for (size_t frequency_line_index = 0; frequency_line_index < scale_factor_bands[band_index].width; frequency_line_index++) {
            tmp[subband_index++] = granule.samples[scale_factor_bands[band_index + 0].start + frequency_line_index];
            tmp[subband_index++] = granule.samples[scale_factor_bands[band_index + 1].start + frequency_line_index];
            tmp[subband_index++] = granule.samples[scale_factor_bands[band_index + 2].start + frequency_line_index];
        }
        band_index += 3;
    }

    for (size_t i = 0; i < 576; i++)
        granule.samples[i] = tmp[i];
}

void MP3LoaderPlugin::reduce_alias(MP3::Granule& granule, size_t max_subband_index)
{
    for (size_t subband = 0; subband < max_subband_index - 18; subband += 18) {
        for (size_t i = 0; i < 8; i++) {
            size_t const idx1 = subband + 17 - i;
            size_t const idx2 = subband + 18 + i;
            auto const d1 = granule.samples[idx1];
            auto const d2 = granule.samples[idx2];
            granule.samples[idx1] = d1 * MP3::Tables::AliasReductionCs[i] - d2 * MP3::Tables::AliasReductionCa[i];
            granule.samples[idx2] = d2 * MP3::Tables::AliasReductionCs[i] + d1 * MP3::Tables::AliasReductionCa[i];
        }
    }
}

void MP3LoaderPlugin::process_stereo(MP3::MP3Frame& frame, size_t granule_index)
{
    size_t band_index_ms_start = 0;
    size_t band_index_ms_end = 0;
    size_t band_index_intensity_start = 0;
    size_t band_index_intensity_end = 0;
    auto& granule_left = frame.channels[0].granules[granule_index];
    auto& granule_right = frame.channels[1].granules[granule_index];

    auto get_last_nonempty_band = [](Span<float> samples, Span<MP3::Tables::ScaleFactorBand const> bands) -> size_t {
        size_t last_nonempty_band = 0;

        for (size_t i = 0; i < bands.size(); i++) {
            bool is_empty = true;
            for (size_t l = bands[i].start; l < bands[i].end; l++) {
                if (samples[l] != 0) {
                    is_empty = false;
                    break;
                }
            }
            if (!is_empty)
                last_nonempty_band = i;
        }

        return last_nonempty_band;
    };

    auto process_ms_stereo = [&](MP3::Tables::ScaleFactorBand const& band) {
        float const SQRT_2 = AK::sqrt(2.0);
        for (size_t i = band.start; i <= band.end; i++) {
            float const m = granule_left.samples[i];
            float const s = granule_right.samples[i];
            granule_left.samples[i] = (m + s) / SQRT_2;
            granule_right.samples[i] = (m - s) / SQRT_2;
        }
    };

    auto process_intensity_stereo = [&](MP3::Tables::ScaleFactorBand const& band, float intensity_stereo_ratio) {
        for (size_t i = band.start; i <= band.end; i++) {
            float const sample_left = granule_left.samples[i];
            float const coeff_l = intensity_stereo_ratio / (1 + intensity_stereo_ratio);
            float const coeff_r = 1 / (1 + intensity_stereo_ratio);
            granule_left.samples[i] = sample_left * coeff_l;
            granule_right.samples[i] = sample_left * coeff_r;
        }
    };

    auto scale_factor_bands = get_scalefactor_bands(granule_right, frame.header.samplerate);

    if (has_flag(frame.header.mode_extension, MP3::ModeExtension::MsStereo)) {
        band_index_ms_start = 0;
        band_index_ms_end = scale_factor_bands.size();
    }

    if (has_flag(frame.header.mode_extension, MP3::ModeExtension::IntensityStereo)) {
        band_index_intensity_start = get_last_nonempty_band(granule_right.samples, scale_factor_bands);
        band_index_intensity_end = scale_factor_bands.size();
        band_index_ms_end = band_index_intensity_start;
    }

    for (size_t band_index = band_index_ms_start; band_index < band_index_ms_end; band_index++) {
        process_ms_stereo(scale_factor_bands[band_index]);
    }

    for (size_t band_index = band_index_intensity_start; band_index < band_index_intensity_end; band_index++) {
        auto const intensity_stereo_position = frame.channels[1].scale_factors[band_index];
        if (intensity_stereo_position == 7) {
            if (has_flag(frame.header.mode_extension, MP3::ModeExtension::MsStereo))
                process_ms_stereo(scale_factor_bands[band_index]);
            continue;
        }
        float const intensity_stereo_ratio = AK::tan(intensity_stereo_position * AK::Pi<float> / 12);
        process_intensity_stereo(scale_factor_bands[band_index], intensity_stereo_ratio);
    }
}

void MP3LoaderPlugin::transform_samples_to_time(Array<float, 576> const& input, size_t input_offset, Array<float, 36>& output, MP3::BlockType block_type)
{
    if (block_type == MP3::BlockType::Short) {
        size_t const N = 12;
        Array<float, N * 3> temp_out;
        Array<float, N / 2> temp_in;

        for (size_t k = 0; k < N / 2; k++)
            temp_in[k] = input[input_offset + 3 * k + 0];
        s_mdct_12.transform(temp_in, Span<float>(temp_out).slice(0, N));
        for (size_t i = 0; i < N; i++)
            temp_out[i + 0] *= MP3::Tables::WindowBlockTypeShort[i];

        for (size_t k = 0; k < N / 2; k++)
            temp_in[k] = input[input_offset + 3 * k + 1];
        s_mdct_12.transform(temp_in, Span<float>(temp_out).slice(12, N));
        for (size_t i = 0; i < N; i++)
            temp_out[i + 12] *= MP3::Tables::WindowBlockTypeShort[i];

        for (size_t k = 0; k < N / 2; k++)
            temp_in[k] = input[input_offset + 3 * k + 2];
        s_mdct_12.transform(temp_in, Span<float>(temp_out).slice(24, N));
        for (size_t i = 0; i < N; i++)
            temp_out[i + 24] *= MP3::Tables::WindowBlockTypeShort[i];

        Span<float> idmct1 = Span<float>(temp_out).slice(0, 12);
        Span<float> idmct2 = Span<float>(temp_out).slice(12, 12);
        Span<float> idmct3 = Span<float>(temp_out).slice(24, 12);
        for (size_t i = 0; i < 6; i++)
            output[i] = 0;
        for (size_t i = 6; i < 12; i++)
            output[i] = idmct1[i - 6];
        for (size_t i = 12; i < 18; i++)
            output[i] = idmct1[i - 6] + idmct2[i - 12];
        for (size_t i = 18; i < 24; i++)
            output[i] = idmct2[i - 12] + idmct3[i - 18];
        for (size_t i = 24; i < 30; i++)
            output[i] = idmct3[i - 18];
        for (size_t i = 30; i < 36; i++)
            output[i] = 0;

    } else {
        s_mdct_36.transform(Span<float const>(input).slice(input_offset, 18), output);
        for (size_t i = 0; i < 36; i++) {
            switch (block_type) {
            case MP3::BlockType::Normal:
                output[i] *= MP3::Tables::WindowBlockTypeNormal[i];
                break;
            case MP3::BlockType::Start:
                output[i] *= MP3::Tables::WindowBlockTypeStart[i];
                break;
            case MP3::BlockType::End:
                output[i] *= MP3::Tables::WindowBlockTypeEnd[i];
                break;
            case MP3::BlockType::Short:
                VERIFY_NOT_REACHED();
                break;
            }
        }
    }
}

// ISO/IEC 11172-3 (Figure A.2)
void MP3LoaderPlugin::synthesis(Array<float, 1024>& V, Array<float, 32>& samples, Array<float, 32>& result)
{
    for (size_t i = 1023; i >= 64; i--) {
        V[i] = V[i - 64];
    }

    for (size_t i = 0; i < 64; i++) {
        V[i] = 0;
        for (size_t k = 0; k < 32; k++) {
            float const N = MP3::Tables::SynthesisSubbandFilterCoefficients[i][k];
            V[i] += N * samples[k];
        }
    }

    Array<float, 512> U;
    for (size_t i = 0; i < 8; i++) {
        for (size_t j = 0; j < 32; j++) {
            U[i * 64 + j] = V[i * 128 + j];
            U[i * 64 + 32 + j] = V[i * 128 + 96 + j];
        }
    }

    Array<float, 512> W;
    for (size_t i = 0; i < 512; i++) {
        W[i] = U[i] * MP3::Tables::WindowSynthesis[i];
    }

    for (size_t j = 0; j < 32; j++) {
        result[j] = 0;
        for (size_t k = 0; k < 16; k++) {
            result[j] += W[j + 32 * k];
        }
    }
}

Span<MP3::Tables::ScaleFactorBand const> MP3LoaderPlugin::get_scalefactor_bands(MP3::Granule const& granule, int samplerate)
{
    switch (granule.block_type) {
    case MP3::BlockType::Short:
        switch (samplerate) {
        case 32000:
            return granule.mixed_block_flag ? MP3::Tables::ScaleFactorBandMixed32000 : MP3::Tables::ScaleFactorBandShort32000;
        case 44100:
            return granule.mixed_block_flag ? MP3::Tables::ScaleFactorBandMixed44100 : MP3::Tables::ScaleFactorBandShort44100;
        case 48000:
            return granule.mixed_block_flag ? MP3::Tables::ScaleFactorBandMixed48000 : MP3::Tables::ScaleFactorBandShort48000;
        }
        break;
    case MP3::BlockType::Normal:
        [[fallthrough]];
    case MP3::BlockType::Start:
        [[fallthrough]];
    case MP3::BlockType::End:
        switch (samplerate) {
        case 32000:
            return MP3::Tables::ScaleFactorBandLong32000;
        case 44100:
            return MP3::Tables::ScaleFactorBandLong44100;
        case 48000:
            return MP3::Tables::ScaleFactorBandLong48000;
        }
    }
    VERIFY_NOT_REACHED();
}

}