summaryrefslogtreecommitdiff
path: root/Userland/Libraries/LibAudio/FlacLoader.cpp
blob: a2baf1aaa782f4ef75f7e0fa7d01305061083ca6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
/*
 * Copyright (c) 2021, kleines Filmröllchen <malu.bertsch@gmail.com>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include "FlacLoader.h"
#include "Buffer.h"
#include <AK/BitStream.h>
#include <AK/Debug.h>
#include <AK/FlyString.h>
#include <AK/Format.h>
#include <AK/Math.h>
#include <AK/ScopeGuard.h>
#include <AK/Stream.h>
#include <AK/String.h>
#include <AK/StringBuilder.h>
#include <LibCore/File.h>
#include <LibCore/FileStream.h>

namespace Audio {

FlacLoaderPlugin::FlacLoaderPlugin(const StringView& path)
    : m_file(Core::File::construct(path))
{
    if (!m_file->open(Core::OpenMode::ReadOnly)) {
        m_error_string = String::formatted("Can't open file: {}", m_file->error_string());
        return;
    }

    m_stream = make<FlacInputStream>(Core::InputFileStream(*m_file));
    if (!m_stream) {
        m_error_string = String::formatted("Can't open memory stream");
        return;
    }

    m_valid = parse_header();
    if (!m_valid)
        return;
    reset();
    if (!m_valid)
        return;

    m_resampler = make<ResampleHelper<double>>(m_sample_rate, 44100);
}

FlacLoaderPlugin::FlacLoaderPlugin(const ByteBuffer& buffer)
{
    m_stream = make<FlacInputStream>(InputMemoryStream(buffer));
    if (!m_stream) {
        m_error_string = String::formatted("Can't open memory stream");
        return;
    }

    m_valid = parse_header();
    if (!m_valid)
        return;
    reset();
    if (!m_valid)
        return;

    m_resampler = make<ResampleHelper<double>>(m_sample_rate, 44100);
}

bool FlacLoaderPlugin::sniff()
{
    return m_valid;
}

bool FlacLoaderPlugin::parse_header()
{
    bool ok = true;

    InputBitStream bit_input = [&]() -> InputBitStream {
        if (m_file) {
            return InputBitStream(m_stream->get<Core::InputFileStream>());
        }
        return InputBitStream(m_stream->get<InputMemoryStream>());
    }();
    ScopeGuard clear_bit_input_errors([&bit_input] { bit_input.handle_any_error(); });

#define CHECK_OK(msg)                                                      \
    do {                                                                   \
        if (!ok) {                                                         \
            m_stream->handle_any_error();                                  \
            m_error_string = String::formatted("Parsing failed: {}", msg); \
            return {};                                                     \
        }                                                                  \
    } while (0)

    // Magic number
    u32 flac = bit_input.read_bits_big_endian(32);
    m_data_start_location += 4;
    ok = ok && flac == 0x664C6143; // "flaC"
    CHECK_OK("FLAC magic number");

    // Receive the streaminfo block
    FlacRawMetadataBlock streaminfo = next_meta_block(bit_input);
    // next_meta_block sets the error string if something goes wrong
    ok = ok && m_error_string.is_empty();
    CHECK_OK(m_error_string);
    ok = ok && (streaminfo.type == FlacMetadataBlockType::STREAMINFO);
    CHECK_OK("First block type");
    InputMemoryStream streaminfo_data_memory(streaminfo.data.bytes());
    InputBitStream streaminfo_data(streaminfo_data_memory);
    ScopeGuard clear_streaminfo_errors([&streaminfo_data] { streaminfo_data.handle_any_error(); });

    // STREAMINFO block
    m_min_block_size = streaminfo_data.read_bits_big_endian(16);
    ok = ok && (m_min_block_size >= 16);
    CHECK_OK("Minimum block size");
    m_max_block_size = streaminfo_data.read_bits_big_endian(16);
    ok = ok && (m_max_block_size >= 16);
    CHECK_OK("Maximum block size");
    m_min_frame_size = streaminfo_data.read_bits_big_endian(24);
    m_max_frame_size = streaminfo_data.read_bits_big_endian(24);
    m_sample_rate = streaminfo_data.read_bits_big_endian(20);
    ok = ok && (m_sample_rate <= 655350);
    CHECK_OK("Sample rate");
    m_num_channels = streaminfo_data.read_bits_big_endian(3) + 1; // 0 ^= one channel

    u8 bits_per_sample = streaminfo_data.read_bits_big_endian(5) + 1;
    if (bits_per_sample == 8) {
        // FIXME: Signed/Unsigned issues?
        m_sample_format = PcmSampleFormat::Uint8;
    } else if (bits_per_sample == 16) {
        m_sample_format = PcmSampleFormat::Int16;
    } else if (bits_per_sample == 24) {
        m_sample_format = PcmSampleFormat::Int24;
    } else if (bits_per_sample == 32) {
        m_sample_format = PcmSampleFormat::Int32;
    } else {
        ok = false;
        CHECK_OK("Sample bit depth");
    }

    m_total_samples = streaminfo_data.read_bits_big_endian(36);
    ok = ok && (m_total_samples > 0);
    CHECK_OK("Number of samples");
    // Parse checksum into a buffer first
    ByteBuffer md5_checksum = ByteBuffer::create_uninitialized(128 / 8);
    auto md5_bytes_read = streaminfo_data.read(md5_checksum);
    ok = ok && (md5_bytes_read == md5_checksum.size());
    CHECK_OK("MD5 Checksum");
    md5_checksum.bytes().copy_to({ m_md5_checksum, sizeof(m_md5_checksum) });

    // Parse other blocks
    // TODO: For a simple first implementation, all other blocks are skipped as allowed by the FLAC specification.
    // Especially the SEEKTABLE block may become useful in a more sophisticated version.
    [[maybe_unused]] u16 meta_blocks_parsed = 1;
    [[maybe_unused]] u16 total_meta_blocks = meta_blocks_parsed;
    FlacRawMetadataBlock block = streaminfo;
    while (!block.is_last_block) {
        block = next_meta_block(bit_input);
        ++total_meta_blocks;
        ok = ok && m_error_string.is_empty();
        CHECK_OK(m_error_string);
    }

    if (m_stream->handle_any_error()) {
        m_error_string = "Parsing failed: Stream";
        return false;
    }

    if constexpr (AFLACLOADER_DEBUG) {
        // HACK: u128 should be able to format itself
        StringBuilder checksum_string;
        for (unsigned int i = 0; i < md5_checksum.size(); ++i) {
            checksum_string.appendff("{:0X}", md5_checksum[i]);
        }
        dbgln("Parsed FLAC header: blocksize {}-{}{}, framesize {}-{}, {}Hz, {}bit, {} channels, {} samples total ({:.2f}s), MD5 {}, data start at {:x} bytes, {} headers total (skipped {})", m_min_block_size, m_max_block_size, is_fixed_blocksize_stream() ? " (constant)" : "", m_min_frame_size, m_max_frame_size, m_sample_rate, pcm_bits_per_sample(m_sample_format), m_num_channels, m_total_samples, m_total_samples / static_cast<double>(m_sample_rate), checksum_string.to_string(), m_data_start_location, total_meta_blocks, total_meta_blocks - meta_blocks_parsed);
    }

    return true;
#undef CHECK_OK
}

FlacRawMetadataBlock FlacLoaderPlugin::next_meta_block(InputBitStream& bit_input)
{
#define CHECK_IO_ERROR()                    \
    do {                                    \
        if (bit_input.handle_any_error()) { \
            m_error_string = "Read error";  \
            return FlacRawMetadataBlock {}; \
        }                                   \
    } while (0)

    bool is_last_block = bit_input.read_bit_big_endian();
    CHECK_IO_ERROR();
    // The block type enum constants agree with the specification
    FlacMetadataBlockType type = (FlacMetadataBlockType)bit_input.read_bits_big_endian(7);
    CHECK_IO_ERROR();
    if (type == FlacMetadataBlockType::INVALID) {
        m_error_string = "Invalid metadata block";
        return FlacRawMetadataBlock {};
    }
    m_data_start_location += 1;

    u32 block_length = bit_input.read_bits_big_endian(24);
    m_data_start_location += 3;
    CHECK_IO_ERROR();
    ByteBuffer block_data = ByteBuffer::create_uninitialized(block_length);
    // Reads exactly the bytes necessary into the Bytes container
    bit_input.read(block_data);
    m_data_start_location += block_length;
    CHECK_IO_ERROR();
    return FlacRawMetadataBlock {
        is_last_block,
        type,
        block_length,
        block_data,
    };

#undef CHECK_IO_ERROR
}

void FlacLoaderPlugin::reset()
{
    seek(m_data_start_location);
    m_current_frame.clear();
}

void FlacLoaderPlugin::seek(const int position)
{
    if (!m_stream->seek(position)) {
        m_error_string = String::formatted("Invalid seek position {}", position);
        m_valid = false;
    }
}

RefPtr<Buffer> FlacLoaderPlugin::get_more_samples(size_t max_bytes_to_read_from_input)
{
    Vector<Frame> samples;
    ssize_t remaining_samples = m_total_samples - m_loaded_samples;
    if (remaining_samples <= 0) {
        return nullptr;
    }

    size_t samples_to_read = min(max_bytes_to_read_from_input, remaining_samples);
    while (samples_to_read > 0) {
        if (!m_current_frame.has_value()) {
            next_frame();
            if (!m_error_string.is_empty()) {
                m_error_string = String::formatted("Frame parsing error: {}", m_error_string);
                return nullptr;
            }
            // HACK: Test the start of the next subframe
            // auto input = m_stream->bit_stream();
            // u64 next = input.read_bits_big_endian(64);
            // dbgln("After frame end: {}", next);
        }
        samples.append(m_current_frame_data.take_first());
        if (m_current_frame_data.size() == 0) {
            m_current_frame.clear();
        }
        --samples_to_read;
    }

    m_loaded_samples += samples.size();
    return Buffer::create_with_samples(move(samples));
}

void FlacLoaderPlugin::next_frame()
{
    bool ok = true;
    InputBitStream bit_stream = m_stream->bit_stream();
#define CHECK_OK(msg)                                                                                                      \
    do {                                                                                                                   \
        if (!ok) {                                                                                                         \
            m_error_string = String::formatted("Frame parsing failed: {}", msg);                                           \
            bit_stream.align_to_byte_boundary();                                                                           \
            bit_stream.handle_any_error();                                                                                 \
            dbgln_if(AFLACLOADER_DEBUG, "Crash in FLAC loader: next bytes are {:x}", bit_stream.read_bits_big_endian(32)); \
            return;                                                                                                        \
        }                                                                                                                  \
    } while (0)

#define CHECK_ERROR_STRING                                             \
    do {                                                               \
        if (!m_error_string.is_null() && !m_error_string.is_empty()) { \
            ok = false;                                                \
            CHECK_OK(m_error_string);                                  \
        }                                                              \
    } while (0)

    // TODO: Check the CRC-16 checksum (and others) by keeping track of read data

    // FLAC frame sync code starts header
    u16 sync_code = bit_stream.read_bits_big_endian(14);
    ok = ok && (sync_code == 0b11111111111110);
    CHECK_OK("Sync code");
    bool reserved_bit = bit_stream.read_bit_big_endian();
    ok = ok && (reserved_bit == 0);
    CHECK_OK("Reserved frame header bit");
    [[maybe_unused]] bool blocking_strategy = bit_stream.read_bit_big_endian();

    u32 sample_count = convert_sample_count_code(bit_stream.read_bits_big_endian(4));
    CHECK_ERROR_STRING;

    u32 frame_sample_rate = convert_sample_rate_code(bit_stream.read_bits_big_endian(4));
    CHECK_ERROR_STRING;

    u8 channel_type_num = bit_stream.read_bits_big_endian(4);
    if (channel_type_num >= 0b1011) {
        ok = false;
        CHECK_OK("Channel assignment");
    }
    FlacFrameChannelType channel_type = (FlacFrameChannelType)channel_type_num;

    PcmSampleFormat bit_depth = convert_bit_depth_code(bit_stream.read_bits_big_endian(3));
    CHECK_ERROR_STRING;

    reserved_bit = bit_stream.read_bit_big_endian();
    ok = ok && (reserved_bit == 0);
    CHECK_OK("Reserved frame header end bit");

    // FIXME: sample number can be 8-56 bits, frame number can be 8-48 bits
    m_current_sample_or_frame = read_utf8_char(bit_stream);

    // Conditional header variables
    if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_8) {
        sample_count = bit_stream.read_bits_big_endian(8) + 1;
    } else if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_16) {
        sample_count = bit_stream.read_bits_big_endian(16) + 1;
    }

    if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_8) {
        frame_sample_rate = bit_stream.read_bits_big_endian(8) * 1000;
    } else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16) {
        frame_sample_rate = bit_stream.read_bits_big_endian(16);
    } else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10) {
        frame_sample_rate = bit_stream.read_bits_big_endian(16) * 10;
    }

    // TODO: check header checksum, see above
    [[maybe_unused]] u8 checksum = bit_stream.read_bits(8);

    dbgln_if(AFLACLOADER_DEBUG, "Frame: {} samples, {}bit {}Hz, channeltype {:x}, {} number {}, header checksum {}", sample_count, pcm_bits_per_sample(bit_depth), frame_sample_rate, channel_type_num, blocking_strategy ? "sample" : "frame", m_current_sample_or_frame, checksum);

    m_current_frame = FlacFrameHeader {
        sample_count,
        frame_sample_rate,
        channel_type,
        bit_depth,
    };

    u8 subframe_count = frame_channel_type_to_channel_count(channel_type);
    Vector<Vector<i32>> current_subframes;
    current_subframes.ensure_capacity(subframe_count);

    for (u8 i = 0; i < subframe_count; ++i) {
        FlacSubframeHeader new_subframe = next_subframe_header(bit_stream, i);
        CHECK_ERROR_STRING;
        Vector<i32> subframe_samples = parse_subframe(new_subframe, bit_stream);
        // HACK: Test the start of the next subframe
        CHECK_ERROR_STRING;
        current_subframes.append(move(subframe_samples));
    }

    bit_stream.align_to_byte_boundary();

    // TODO: check checksum, see above
    [[maybe_unused]] u16 footer_checksum = bit_stream.read_bits_big_endian(16);

    Vector<i32> left, right;

    switch (channel_type) {
    case FlacFrameChannelType::Mono:
        left = right = current_subframes[0];
        break;
    case FlacFrameChannelType::Stereo:
    // TODO mix together surround channels on each side?
    case FlacFrameChannelType::StereoCenter:
    case FlacFrameChannelType::Surround4p0:
    case FlacFrameChannelType::Surround5p0:
    case FlacFrameChannelType::Surround5p1:
    case FlacFrameChannelType::Surround6p1:
    case FlacFrameChannelType::Surround7p1:
        left = current_subframes[0];
        right = current_subframes[1];
        break;
    case FlacFrameChannelType::LeftSideStereo:
        // channels are left (0) and side (1)
        left = current_subframes[0];
        right.ensure_capacity(left.size());
        for (size_t i = 0; i < left.size(); ++i) {
            // right = left - side
            right.unchecked_append(left[i] - current_subframes[1][i]);
        }
        break;
    case FlacFrameChannelType::RightSideStereo:
        // channels are side (0) and right (1)
        right = current_subframes[1];
        left.ensure_capacity(right.size());
        for (size_t i = 0; i < right.size(); ++i) {
            // left = right + side
            left.unchecked_append(right[i] + current_subframes[0][i]);
        }
        break;
    case FlacFrameChannelType::MidSideStereo:
        // channels are mid (0) and side (1)
        left.ensure_capacity(current_subframes[0].size());
        right.ensure_capacity(current_subframes[0].size());
        for (size_t i = 0; i < current_subframes[0].size(); ++i) {
            i64 mid = current_subframes[0][i];
            i64 side = current_subframes[1][i];
            mid *= 2;
            // prevent integer division errors
            left.unchecked_append(static_cast<i32>((mid + side) / 2));
            right.unchecked_append(static_cast<i32>((mid - side) / 2));
        }
        break;
    }

    VERIFY(left.size() == right.size());

    double sample_rescale = static_cast<double>(1 << (pcm_bits_per_sample(m_current_frame->bit_depth) - 1));
    dbgln_if(AFLACLOADER_DEBUG, "Sample rescaled from {} bits: factor {:.1f}", pcm_bits_per_sample(m_current_frame->bit_depth), sample_rescale);

    m_current_frame_data.clear_with_capacity();
    m_current_frame_data.ensure_capacity(left.size());
    // zip together channels
    for (size_t i = 0; i < left.size(); ++i) {
        Frame frame = { left[i] / sample_rescale, right[i] / sample_rescale };
        m_current_frame_data.unchecked_append(frame);
    }

#undef CHECK_OK
#undef CHECK_ERROR_STRING
}

u32 FlacLoaderPlugin::convert_sample_count_code(u8 sample_count_code)
{
    // single codes
    switch (sample_count_code) {
    case 0:
        m_error_string = "Reserved block size";
        return 0;
    case 1:
        return 192;
    case 6:
        return FLAC_BLOCKSIZE_AT_END_OF_HEADER_8;
    case 7:
        return FLAC_BLOCKSIZE_AT_END_OF_HEADER_16;
    }
    if (sample_count_code >= 2 && sample_count_code <= 5) {
        return 576 * AK::exp2(sample_count_code - 2);
    }
    return 256 * AK::exp2(sample_count_code - 8);
}

u32 FlacLoaderPlugin::convert_sample_rate_code(u8 sample_rate_code)
{
    switch (sample_rate_code) {
    case 0:
        return m_sample_rate;
    case 1:
        return 88200;
    case 2:
        return 176400;
    case 3:
        return 192000;
    case 4:
        return 8000;
    case 5:
        return 16000;
    case 6:
        return 22050;
    case 7:
        return 24000;
    case 8:
        return 32000;
    case 9:
        return 44100;
    case 10:
        return 48000;
    case 11:
        return 96000;
    case 12:
        return FLAC_SAMPLERATE_AT_END_OF_HEADER_8;
    case 13:
        return FLAC_SAMPLERATE_AT_END_OF_HEADER_16;
    case 14:
        return FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10;
    default:
        m_error_string = "Invalid sample rate code";
        return 0;
    }
}

PcmSampleFormat FlacLoaderPlugin::convert_bit_depth_code(u8 bit_depth_code)
{
    switch (bit_depth_code) {
    case 0:
        return m_sample_format;
    case 1:
        return PcmSampleFormat::Uint8;
    case 4:
        return PcmSampleFormat::Int16;
    case 6:
        return PcmSampleFormat::Int24;
    case 3:
    case 7:
        m_error_string = "Reserved sample size";
        return PcmSampleFormat::Float64;
    default:
        m_error_string = String::formatted("Unsupported sample size {}", bit_depth_code);
        return PcmSampleFormat::Float64;
    }
}

u8 frame_channel_type_to_channel_count(FlacFrameChannelType channel_type)
{
    if (channel_type <= 7)
        return channel_type + 1;
    return 2;
}

FlacSubframeHeader FlacLoaderPlugin::next_subframe_header(InputBitStream& bit_stream, u8 channel_index)
{
    u8 bits_per_sample = pcm_bits_per_sample(m_current_frame->bit_depth);

    // For inter-channel correlation, the side channel needs an extra bit for its samples
    switch (m_current_frame->channels) {
    case LeftSideStereo:
    case MidSideStereo:
        if (channel_index == 1) {
            ++bits_per_sample;
        }
        break;
    case RightSideStereo:
        if (channel_index == 0) {
            ++bits_per_sample;
        }
        break;
    // "normal" channel types
    default:
        break;
    }

    // zero-bit padding
    if (bit_stream.read_bit_big_endian() != 0) {
        m_error_string = "Zero bit padding";
        return {};
    };

    // subframe type (encoding)
    u8 subframe_code = bit_stream.read_bits_big_endian(6);
    if ((subframe_code >= 0b000010 && subframe_code <= 0b000111) || (subframe_code > 0b001100 && subframe_code < 0b100000)) {
        m_error_string = "Subframe type";
        return {};
    }

    FlacSubframeType subframe_type;
    u8 order = 0;
    //LPC has the highest bit set
    if ((subframe_code & 0b100000) > 0) {
        subframe_type = FlacSubframeType::LPC;
        order = (subframe_code & 0b011111) + 1;
    } else if ((subframe_code & 0b001000) > 0) {
        // Fixed has the third-highest bit set
        subframe_type = FlacSubframeType::Fixed;
        order = (subframe_code & 0b000111);
    } else {
        subframe_type = (FlacSubframeType)subframe_code;
    }

    // wasted bits per sample (unary encoding)
    bool has_wasted_bits = bit_stream.read_bit_big_endian();
    u8 k = 0;
    if (has_wasted_bits) {
        bool current_k_bit = 0;
        do {
            current_k_bit = bit_stream.read_bit_big_endian();
            ++k;
        } while (current_k_bit != 1);
    }

    return FlacSubframeHeader {
        subframe_type,
        order,
        k,
        bits_per_sample
    };
}

Vector<i32> FlacLoaderPlugin::parse_subframe(FlacSubframeHeader& subframe_header, InputBitStream& bit_input)
{
    Vector<i32> samples;

    switch (subframe_header.type) {
    case FlacSubframeType::Constant: {
        u64 constant_value = bit_input.read_bits_big_endian(subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample);
        dbgln_if(AFLACLOADER_DEBUG, "Constant subframe: {}", constant_value);

        samples.ensure_capacity(m_current_frame->sample_count);
        for (u32 i = 0; i < m_current_frame->sample_count; ++i) {
            samples.unchecked_append(sign_extend(constant_value, subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample));
        }
        break;
    }
    case FlacSubframeType::Fixed: {
        dbgln_if(AFLACLOADER_DEBUG, "Fixed LPC subframe order {}", subframe_header.order);
        samples = decode_fixed_lpc(subframe_header, bit_input);
        break;
    }
    case FlacSubframeType::Verbatim: {
        dbgln_if(AFLACLOADER_DEBUG, "Verbatim subframe");
        samples = decode_verbatim(subframe_header, bit_input);
        break;
    }
    case FlacSubframeType::LPC: {
        dbgln_if(AFLACLOADER_DEBUG, "Custom LPC subframe order {}", subframe_header.order);
        samples = decode_custom_lpc(subframe_header, bit_input);
        break;
    }
    default:
        m_error_string = "Unhandled FLAC subframe type";
        return {};
    }
    if (!m_error_string.is_empty()) {
        return {};
    }

    for (size_t i = 0; i < samples.size(); ++i) {
        samples[i] <<= subframe_header.wasted_bits_per_sample;
    }

    ResampleHelper<i32> resampler(m_current_frame->sample_rate, m_sample_rate);
    return resampler.resample(samples);
}

// Decode a subframe that isn't actually encoded
Vector<i32> FlacLoaderPlugin::decode_verbatim([[maybe_unused]] FlacSubframeHeader& subframe, [[maybe_unused]] InputBitStream& bit_input)
{
    TODO();
}

// Decode a subframe encoded with a custom linear predictor coding, i.e. the subframe provides the polynomial order and coefficients
Vector<i32> FlacLoaderPlugin::decode_custom_lpc(FlacSubframeHeader& subframe, InputBitStream& bit_input)
{
    Vector<i32> decoded;
    decoded.ensure_capacity(m_current_frame->sample_count);

    // warm-up samples
    for (auto i = 0; i < subframe.order; ++i) {
        decoded.unchecked_append(sign_extend(bit_input.read_bits_big_endian(subframe.bits_per_sample - subframe.wasted_bits_per_sample), subframe.bits_per_sample - subframe.wasted_bits_per_sample));
    }

    // precision of the coefficients
    u8 lpc_precision = bit_input.read_bits_big_endian(4);
    if (lpc_precision == 0b1111) {
        m_error_string = "Invalid linear predictor coefficient precision";
        return {};
    }
    lpc_precision += 1;

    // shift needed on the data (signed!)
    i8 lpc_shift = sign_extend(bit_input.read_bits_big_endian(5), 5);

    Vector<i32> coefficients;
    coefficients.ensure_capacity(subframe.order);
    // read coefficients
    for (auto i = 0; i < subframe.order; ++i) {
        u32 raw_coefficient = bit_input.read_bits_big_endian(lpc_precision);
        i32 coefficient = sign_extend(raw_coefficient, lpc_precision);
        coefficients.unchecked_append(coefficient);
    }

    dbgln_if(AFLACLOADER_DEBUG, "{}-bit {} shift coefficients: {}", lpc_precision, lpc_shift, coefficients);

    // decode residual
    // FIXME: This order may be incorrect, the LPC is applied to the residual, probably leading to incorrect results.
    decoded = decode_residual(decoded, subframe, bit_input);

    // approximate the waveform with the predictor
    for (size_t i = subframe.order; i < m_current_frame->sample_count; ++i) {
        i64 sample = 0;
        for (size_t t = 0; t < subframe.order; ++t) {
            sample += static_cast<i64>(coefficients[t]) * static_cast<i64>(decoded[i - t - 1]);
        }
        decoded[i] += sample >> lpc_shift;
    }

    return decoded;
}

// Decode a subframe encoded with one of the fixed linear predictor codings
Vector<i32> FlacLoaderPlugin::decode_fixed_lpc(FlacSubframeHeader& subframe, InputBitStream& bit_input)
{
    Vector<i32> decoded;
    decoded.ensure_capacity(m_current_frame->sample_count);

    // warm-up samples
    for (auto i = 0; i < subframe.order; ++i) {
        decoded.unchecked_append(sign_extend(bit_input.read_bits_big_endian(subframe.bits_per_sample - subframe.wasted_bits_per_sample), subframe.bits_per_sample - subframe.wasted_bits_per_sample));
    }

    decode_residual(decoded, subframe, bit_input);
    if (!m_error_string.is_empty())
        return {};
    dbgln_if(AFLACLOADER_DEBUG, "decoded length {}, {} order predictor", decoded.size(), subframe.order);

    switch (subframe.order) {
    case 0:
        // s_0(t) = 0
        for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
            decoded[i] += 0;
        break;
    case 1:
        // s_1(t) = s(t-1)
        for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
            decoded[i] += decoded[i - 1];
        break;
    case 2:
        // s_2(t) = 2s(t-1) - s(t-2)
        for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
            decoded[i] += 2 * decoded[i - 1] - decoded[i - 2];
        break;
    case 3:
        // s_3(t) = 3s(t-1) - 3s(t-2) + s(t-3)
        for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
            decoded[i] += 3 * decoded[i - 1] - 3 * decoded[i - 2] + decoded[i - 3];
        break;
    case 4:
        // s_4(t) = 4s(t-1) - 6s(t-2) + 4s(t-3) - s(t-4)
        for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i)
            decoded[i] += 4 * decoded[i - 1] - 6 * decoded[i - 2] + 4 * decoded[i - 3] - decoded[i - 4];
        break;
    default:
        m_error_string = String::formatted("Unrecognized predictor order {}", subframe.order);
        break;
    }
    return decoded;
}

// Decode the residual, the "error" between the function approximation and the actual audio data
Vector<i32> FlacLoaderPlugin::decode_residual(Vector<i32>& decoded, FlacSubframeHeader& subframe, InputBitStream& bit_input)
{
    u8 residual_mode = bit_input.read_bits_big_endian(2);
    u8 partition_order = bit_input.read_bits_big_endian(4);
    size_t partitions = 1 << partition_order;

    if (residual_mode == FlacResidualMode::Rice4Bit) {
        // decode a single Rice partition with four bits for the order k
        for (size_t i = 0; i < partitions; ++i) {
            auto rice_partition = decode_rice_partition(4, partitions, i, subframe, bit_input);
            decoded.extend(move(rice_partition));
        }
    } else if (residual_mode == FlacResidualMode::Rice5Bit) {
        // five bits equivalent
        for (size_t i = 0; i < partitions; ++i) {
            auto rice_partition = decode_rice_partition(5, partitions, i, subframe, bit_input);
            decoded.extend(move(rice_partition));
        }
    } else {
        m_error_string = "Reserved residual coding method";
        return {};
    }

    return decoded;
}

// Decode a single Rice partition as part of the residual, every partition can have its own Rice parameter k
ALWAYS_INLINE Vector<i32> FlacLoaderPlugin::decode_rice_partition(u8 partition_type, u32 partitions, u32 partition_index, FlacSubframeHeader& subframe, InputBitStream& bit_input)
{
    // Rice parameter / Exp-Golomb order
    u8 k = bit_input.read_bits_big_endian(partition_type);

    u32 residual_sample_count;
    if (partitions == 0)
        residual_sample_count = m_current_frame->sample_count - subframe.order;
    else
        residual_sample_count = m_current_frame->sample_count / partitions;
    if (partition_index == 0)
        residual_sample_count -= subframe.order;

    Vector<i32> rice_partition;
    rice_partition.resize(residual_sample_count);

    // escape code for unencoded binary partition
    if (k == (1 << partition_type) - 1) {
        u8 unencoded_bps = bit_input.read_bits_big_endian(5);
        for (size_t r = 0; r < residual_sample_count; ++r) {
            rice_partition[r] = bit_input.read_bits_big_endian(unencoded_bps);
        }
    } else {
        for (size_t r = 0; r < residual_sample_count; ++r) {
            rice_partition[r] = decode_unsigned_exp_golomb(k, bit_input);
        }
    }

    return rice_partition;
}

// Decode a single number encoded with Rice/Exponential-Golomb encoding (the unsigned variant)
ALWAYS_INLINE i32 decode_unsigned_exp_golomb(u8 k, InputBitStream& bit_input)
{
    u8 q = 0;
    while (bit_input.read_bit_big_endian() == 0)
        ++q;

    // least significant bits (remainder)
    u32 rem = bit_input.read_bits_big_endian(k);
    u32 value = (u32)(q << k | rem);

    return rice_to_signed(value);
}

u64 read_utf8_char(InputStream& input)
{
    u64 character;
    ByteBuffer single_byte_buffer = ByteBuffer::create_uninitialized(1);
    input.read(single_byte_buffer);
    u8 start_byte = single_byte_buffer[0];
    // Signal byte is zero: ASCII character
    if ((start_byte & 0b10000000) == 0) {
        return start_byte;
    } else if ((start_byte & 0b11000000) == 0b10000000) {
        // illegal continuation byte
        return 0;
    }
    // This algorithm is too good and supports the theoretical max 0xFF start byte
    u8 length = 1;
    while (((start_byte << length) & 0b10000000) == 0b10000000)
        ++length;
    u8 bits_from_start_byte = 8 - (length + 1);
    u8 start_byte_bitmask = AK::exp2(bits_from_start_byte) - 1;
    character = start_byte_bitmask & start_byte;
    for (u8 i = length - 1; i > 0; --i) {
        input.read(single_byte_buffer);
        u8 current_byte = single_byte_buffer[0];
        character = (character << 6) | (current_byte & 0b00111111);
    }
    return character;
}

i64 sign_extend(u32 n, u8 size)
{
    // negative
    if ((n & (1 << (size - 1))) > 0) {
        return static_cast<i64>(n | (0xffffffff << size));
    }
    // positive
    return n;
}

i32 rice_to_signed(u32 x)
{
    // positive numbers are even, negative numbers are odd
    // bitmask for conditionally inverting the entire number, thereby "negating" it
    i32 sign = -(x & 1);
    // copies the sign's sign onto the actual magnitude of x
    return (i32)(sign ^ (x >> 1));
}
}