1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
|
/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Tobias Christiansen <tobi@tobyase.de>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "MallocTracer.h"
#include "Emulator.h"
#include "MmapRegion.h"
#include <AK/Debug.h>
#include <AK/TemporaryChange.h>
#include <mallocdefs.h>
#include <string.h>
#include <unistd.h>
namespace UserspaceEmulator {
MallocTracer::MallocTracer(Emulator& emulator)
: m_emulator(emulator)
{
}
template<typename Callback>
inline void MallocTracer::for_each_mallocation(Callback callback) const
{
m_emulator.mmu().for_each_region([&](auto& region) {
if (is<MmapRegion>(region) && static_cast<const MmapRegion&>(region).is_malloc_block()) {
auto* malloc_data = static_cast<MmapRegion&>(region).malloc_metadata();
for (auto& mallocation : malloc_data->mallocations) {
if (mallocation.used && callback(mallocation) == IterationDecision::Break)
return IterationDecision::Break;
}
}
return IterationDecision::Continue;
});
}
void MallocTracer::target_did_malloc(Badge<Emulator>, FlatPtr address, size_t size)
{
if (m_emulator.is_in_loader_code())
return;
auto* region = m_emulator.mmu().find_region({ 0x23, address });
VERIFY(region);
VERIFY(is<MmapRegion>(*region));
auto& mmap_region = static_cast<MmapRegion&>(*region);
auto* shadow_bits = mmap_region.shadow_data() + address - mmap_region.base();
memset(shadow_bits, 0, size);
if (auto* existing_mallocation = find_mallocation(address)) {
VERIFY(existing_mallocation->freed);
existing_mallocation->size = size;
existing_mallocation->freed = false;
existing_mallocation->malloc_backtrace = m_emulator.raw_backtrace();
existing_mallocation->free_backtrace.clear();
return;
}
if (!mmap_region.is_malloc_block()) {
auto chunk_size = mmap_region.read32(offsetof(CommonHeader, m_size)).value();
mmap_region.set_malloc_metadata({},
adopt_own(*new MallocRegionMetadata {
.region = mmap_region,
.address = mmap_region.base(),
.chunk_size = chunk_size,
.mallocations = {},
}));
auto& malloc_data = *mmap_region.malloc_metadata();
bool is_chunked_block = malloc_data.chunk_size <= size_classes[size_classes.size() - 1];
if (is_chunked_block)
malloc_data.mallocations.resize((ChunkedBlock::block_size - sizeof(ChunkedBlock)) / malloc_data.chunk_size);
else
malloc_data.mallocations.resize(1);
// Mark the containing mmap region as a malloc block!
mmap_region.set_malloc(true);
}
auto* mallocation = mmap_region.malloc_metadata()->mallocation_for_address(address);
VERIFY(mallocation);
*mallocation = { address, size, true, false, m_emulator.raw_backtrace(), Vector<FlatPtr>() };
}
ALWAYS_INLINE Mallocation* MallocRegionMetadata::mallocation_for_address(FlatPtr address) const
{
auto index = chunk_index_for_address(address);
if (!index.has_value())
return nullptr;
return &const_cast<Mallocation&>(this->mallocations[index.value()]);
}
ALWAYS_INLINE Optional<size_t> MallocRegionMetadata::chunk_index_for_address(FlatPtr address) const
{
bool is_chunked_block = chunk_size <= size_classes[size_classes.size() - 1];
if (!is_chunked_block) {
// This is a BigAllocationBlock
return 0;
}
auto offset_into_block = address - this->address;
if (offset_into_block < sizeof(ChunkedBlock))
return 0;
auto chunk_offset = offset_into_block - sizeof(ChunkedBlock);
auto chunk_index = chunk_offset / this->chunk_size;
if (chunk_index >= mallocations.size())
return {};
return chunk_index;
}
void MallocTracer::target_did_free(Badge<Emulator>, FlatPtr address)
{
if (!address)
return;
if (m_emulator.is_in_loader_code())
return;
if (auto* mallocation = find_mallocation(address)) {
if (mallocation->freed) {
reportln("\n=={}== \033[31;1mDouble free()\033[0m, {:p}", getpid(), address);
reportln("=={}== Address {} has already been passed to free()", getpid(), address);
m_emulator.dump_backtrace();
} else {
mallocation->freed = true;
mallocation->free_backtrace = m_emulator.raw_backtrace();
}
return;
}
reportln("\n=={}== \033[31;1mInvalid free()\033[0m, {:p}", getpid(), address);
reportln("=={}== Address {} has never been returned by malloc()", getpid(), address);
m_emulator.dump_backtrace();
}
void MallocTracer::target_did_realloc(Badge<Emulator>, FlatPtr address, size_t size)
{
if (m_emulator.is_in_loader_code())
return;
auto* region = m_emulator.mmu().find_region({ 0x23, address });
VERIFY(region);
VERIFY(is<MmapRegion>(*region));
auto& mmap_region = static_cast<MmapRegion&>(*region);
VERIFY(mmap_region.is_malloc_block());
auto* existing_mallocation = find_mallocation(address);
VERIFY(existing_mallocation);
VERIFY(!existing_mallocation->freed);
size_t old_size = existing_mallocation->size;
auto* shadow_bits = mmap_region.shadow_data() + address - mmap_region.base();
if (size > old_size) {
memset(shadow_bits + old_size, 1, size - old_size);
} else {
memset(shadow_bits + size, 1, old_size - size);
}
existing_mallocation->size = size;
// FIXME: Should we track malloc/realloc backtrace separately perhaps?
existing_mallocation->malloc_backtrace = m_emulator.raw_backtrace();
}
Mallocation* MallocTracer::find_mallocation(FlatPtr address)
{
auto* region = m_emulator.mmu().find_region({ 0x23, address });
if (!region)
return nullptr;
return find_mallocation(*region, address);
}
Mallocation* MallocTracer::find_mallocation_before(FlatPtr address)
{
Mallocation* found_mallocation = nullptr;
for_each_mallocation([&](auto& mallocation) {
if (mallocation.address >= address)
return IterationDecision::Continue;
if (!found_mallocation || (mallocation.address > found_mallocation->address))
found_mallocation = const_cast<Mallocation*>(&mallocation);
return IterationDecision::Continue;
});
return found_mallocation;
}
Mallocation* MallocTracer::find_mallocation_after(FlatPtr address)
{
Mallocation* found_mallocation = nullptr;
for_each_mallocation([&](auto& mallocation) {
if (mallocation.address <= address)
return IterationDecision::Continue;
if (!found_mallocation || (mallocation.address < found_mallocation->address))
found_mallocation = const_cast<Mallocation*>(&mallocation);
return IterationDecision::Continue;
});
return found_mallocation;
}
void MallocTracer::audit_read(const Region& region, FlatPtr address, size_t size)
{
if (!m_auditing_enabled)
return;
if (m_emulator.is_in_malloc_or_free() || m_emulator.is_in_libsystem()) {
return;
}
if (m_emulator.is_in_loader_code()) {
return;
}
auto* mallocation = find_mallocation(region, address);
if (!mallocation) {
reportln("\n=={}== \033[31;1mHeap buffer overflow\033[0m, invalid {}-byte read at address {:p}", getpid(), size, address);
m_emulator.dump_backtrace();
auto* mallocation_before = find_mallocation_before(address);
auto* mallocation_after = find_mallocation_after(address);
size_t distance_to_mallocation_before = mallocation_before ? (address - mallocation_before->address - mallocation_before->size) : 0;
size_t distance_to_mallocation_after = mallocation_after ? (mallocation_after->address - address) : 0;
if (mallocation_before && (!mallocation_after || distance_to_mallocation_before < distance_to_mallocation_after)) {
reportln("=={}== Address is {} byte(s) after block of size {}, identity {:p}, allocated at:", getpid(), distance_to_mallocation_before, mallocation_before->size, mallocation_before->address);
m_emulator.dump_backtrace(mallocation_before->malloc_backtrace);
return;
}
if (mallocation_after && (!mallocation_before || distance_to_mallocation_after < distance_to_mallocation_before)) {
reportln("=={}== Address is {} byte(s) before block of size {}, identity {:p}, allocated at:", getpid(), distance_to_mallocation_after, mallocation_after->size, mallocation_after->address);
m_emulator.dump_backtrace(mallocation_after->malloc_backtrace);
}
return;
}
size_t offset_into_mallocation = address - mallocation->address;
if (mallocation->freed) {
reportln("\n=={}== \033[31;1mUse-after-free\033[0m, invalid {}-byte read at address {:p}", getpid(), size, address);
m_emulator.dump_backtrace();
reportln("=={}== Address is {} byte(s) into block of size {}, allocated at:", getpid(), offset_into_mallocation, mallocation->size);
m_emulator.dump_backtrace(mallocation->malloc_backtrace);
reportln("=={}== Later freed at:", getpid());
m_emulator.dump_backtrace(mallocation->free_backtrace);
return;
}
}
void MallocTracer::audit_write(const Region& region, FlatPtr address, size_t size)
{
if (!m_auditing_enabled)
return;
if (m_emulator.is_in_malloc_or_free())
return;
if (m_emulator.is_in_loader_code()) {
return;
}
auto* mallocation = find_mallocation(region, address);
if (!mallocation) {
reportln("\n=={}== \033[31;1mHeap buffer overflow\033[0m, invalid {}-byte write at address {:p}", getpid(), size, address);
m_emulator.dump_backtrace();
auto* mallocation_before = find_mallocation_before(address);
auto* mallocation_after = find_mallocation_after(address);
size_t distance_to_mallocation_before = mallocation_before ? (address - mallocation_before->address - mallocation_before->size) : 0;
size_t distance_to_mallocation_after = mallocation_after ? (mallocation_after->address - address) : 0;
if (mallocation_before && (!mallocation_after || distance_to_mallocation_before < distance_to_mallocation_after)) {
reportln("=={}== Address is {} byte(s) after block of size {}, identity {:p}, allocated at:", getpid(), distance_to_mallocation_before, mallocation_before->size, mallocation_before->address);
m_emulator.dump_backtrace(mallocation_before->malloc_backtrace);
return;
}
if (mallocation_after && (!mallocation_before || distance_to_mallocation_after < distance_to_mallocation_before)) {
reportln("=={}== Address is {} byte(s) before block of size {}, identity {:p}, allocated at:", getpid(), distance_to_mallocation_after, mallocation_after->size, mallocation_after->address);
m_emulator.dump_backtrace(mallocation_after->malloc_backtrace);
}
return;
}
size_t offset_into_mallocation = address - mallocation->address;
if (mallocation->freed) {
reportln("\n=={}== \033[31;1mUse-after-free\033[0m, invalid {}-byte write at address {:p}", getpid(), size, address);
m_emulator.dump_backtrace();
reportln("=={}== Address is {} byte(s) into block of size {}, allocated at:", getpid(), offset_into_mallocation, mallocation->size);
m_emulator.dump_backtrace(mallocation->malloc_backtrace);
reportln("=={}== Later freed at:", getpid());
m_emulator.dump_backtrace(mallocation->free_backtrace);
return;
}
}
void MallocTracer::populate_memory_graph()
{
// Create Node for each live Mallocation
for_each_mallocation([&](auto& mallocation) {
if (mallocation.freed)
return IterationDecision::Continue;
m_memory_graph.set(mallocation.address, {});
return IterationDecision::Continue;
});
// Find pointers from each memory region to another
for_each_mallocation([&](auto& mallocation) {
if (mallocation.freed)
return IterationDecision::Continue;
size_t pointers_in_mallocation = mallocation.size / sizeof(u32);
auto& edges_from_mallocation = m_memory_graph.find(mallocation.address)->value;
for (size_t i = 0; i < pointers_in_mallocation; ++i) {
auto value = m_emulator.mmu().read32({ 0x23, mallocation.address + i * sizeof(u32) });
auto other_address = value.value();
if (!value.is_uninitialized() && m_memory_graph.contains(value.value())) {
if constexpr (REACHABLE_DEBUG)
reportln("region/mallocation {:p} is reachable from other mallocation {:p}", other_address, mallocation.address);
edges_from_mallocation.edges_from_node.append(other_address);
}
}
return IterationDecision::Continue;
});
// Find mallocations that are pointed to by other regions
Vector<FlatPtr> reachable_mallocations = {};
m_emulator.mmu().for_each_region([&](auto& region) {
// Skip the stack
if (region.is_stack())
return IterationDecision::Continue;
if (region.is_text())
return IterationDecision::Continue;
if (!region.is_readable())
return IterationDecision::Continue;
// Skip malloc blocks
if (is<MmapRegion>(region) && static_cast<const MmapRegion&>(region).is_malloc_block())
return IterationDecision::Continue;
size_t pointers_in_region = region.size() / sizeof(u32);
for (size_t i = 0; i < pointers_in_region; ++i) {
auto value = region.read32(i * sizeof(u32));
auto other_address = value.value();
if (!value.is_uninitialized() && m_memory_graph.contains(value.value())) {
if constexpr (REACHABLE_DEBUG)
reportln("region/mallocation {:p} is reachable from region {:p}-{:p}", other_address, region.base(), region.end() - 1);
m_memory_graph.find(other_address)->value.is_reachable = true;
reachable_mallocations.append(other_address);
}
}
return IterationDecision::Continue;
});
// Propagate reachability
// There are probably better ways to do that
Vector<FlatPtr> visited = {};
for (size_t i = 0; i < reachable_mallocations.size(); ++i) {
auto reachable = reachable_mallocations.at(i);
if (visited.contains_slow(reachable))
continue;
visited.append(reachable);
auto& mallocation_node = m_memory_graph.find(reachable)->value;
if (!mallocation_node.is_reachable)
mallocation_node.is_reachable = true;
for (auto& edge : mallocation_node.edges_from_node) {
reachable_mallocations.append(edge);
}
}
}
void MallocTracer::dump_memory_graph()
{
for (auto& key : m_memory_graph.keys()) {
auto value = m_memory_graph.find(key)->value;
dbgln("Block {:p} [{}reachable] ({} edges)", key, !value.is_reachable ? "not " : "", value.edges_from_node.size());
for (auto& edge : value.edges_from_node) {
dbgln(" -> {:p}", edge);
}
}
}
void MallocTracer::dump_leak_report()
{
TemporaryChange change(m_auditing_enabled, false);
size_t bytes_leaked = 0;
size_t leaks_found = 0;
populate_memory_graph();
if constexpr (REACHABLE_DEBUG)
dump_memory_graph();
for_each_mallocation([&](auto& mallocation) {
if (mallocation.freed)
return IterationDecision::Continue;
auto& value = m_memory_graph.find(mallocation.address)->value;
if (value.is_reachable)
return IterationDecision::Continue;
++leaks_found;
bytes_leaked += mallocation.size;
reportln("\n=={}== \033[31;1mLeak\033[0m, {}-byte allocation at address {:p}", getpid(), mallocation.size, mallocation.address);
m_emulator.dump_backtrace(mallocation.malloc_backtrace);
return IterationDecision::Continue;
});
if (!leaks_found)
reportln("\n=={}== \033[32;1mNo leaks found!\033[0m", getpid());
else
reportln("\n=={}== \033[31;1m{} leak(s) found: {} byte(s) leaked\033[0m", getpid(), leaks_found, bytes_leaked);
}
}
|