summaryrefslogtreecommitdiff
path: root/Userland/Applications/SpaceAnalyzer/TreeMapWidget.cpp
blob: d9a8160ed742cf1e3ddc047c5232c2f2783a5cfa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
/*
 * Copyright (c) 2021-2022, the SerenityOS developers.
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include "TreeMapWidget.h"
#include <AK/Array.h>
#include <AK/NumberFormat.h>
#include <LibGUI/ConnectionToWindowServer.h>
#include <LibGUI/Painter.h>
#include <LibGfx/Font.h>
#include <WindowServer/WindowManager.h>

REGISTER_WIDGET(SpaceAnalyzer, TreeMapWidget)

namespace SpaceAnalyzer {

static constexpr Array colors = {
    Color(253, 231, 37),
    Color(148, 216, 64),
    Color(60, 188, 117),
    Color(31, 150, 139),
    Color(45, 112, 142),
    Color(63, 71, 136),
    Color(85, 121, 104),
};

static float get_normalized_aspect_ratio(float a, float b)
{
    if (a < b) {
        return a / b;
    } else {
        return b / a;
    }
}

static bool node_is_leaf(const TreeMapNode& node)
{
    return node.num_children() == 0;
}

bool TreeMapWidget::rect_can_contain_label(const Gfx::IntRect& rect) const
{
    return rect.height() >= font().presentation_size() && rect.width() > 20;
}

void TreeMapWidget::paint_cell_frame(GUI::Painter& painter, const TreeMapNode& node, const Gfx::IntRect& cell_rect, const Gfx::IntRect& inner_rect, int depth, HasLabel has_label) const
{
    if (cell_rect.width() <= 2 || cell_rect.height() <= 2) {
        painter.fill_rect(cell_rect, Color::Black);
        return;
    }
    Gfx::IntRect remainder = cell_rect;

    Color color = colors[depth % (sizeof(colors) / sizeof(colors[0]))];
    if (m_selected_node_cache == &node) {
        color = color.darkened(0.8f);
    }

    // Draw borders.
    painter.fill_rect(remainder.take_from_right(1), Color::Black);
    painter.fill_rect(remainder.take_from_bottom(1), Color::Black);
    // Draw highlights.
    painter.fill_rect(remainder.take_from_right(1), color.darkened());
    painter.fill_rect(remainder.take_from_bottom(1), color.darkened());
    painter.fill_rect(remainder.take_from_top(1), color.lightened());
    painter.fill_rect(remainder.take_from_left(1), color.lightened());

    // Paint the background.
    if (inner_rect.is_empty()) {
        painter.fill_rect(remainder, color);
    } else {
        // Draw black edges above and to the left of the inner_rect.
        Gfx::IntRect border_rect = inner_rect.inflated(2, 2);
        Gfx::IntRect hammer_rect = border_rect;
        hammer_rect.set_width(hammer_rect.width() - 1);
        hammer_rect.set_height(hammer_rect.height() - 1);
        painter.fill_rect(border_rect.take_from_top(1), Color::Black);
        painter.fill_rect(border_rect.take_from_left(1), Color::Black);
        for (auto& shard : remainder.shatter(hammer_rect)) {
            painter.fill_rect(shard, color);
        }
    }

    // Paint text.
    if (has_label == HasLabel::Yes) {
        Gfx::IntRect text_rect = remainder;
        text_rect.shrink(4, 4);
        painter.clear_clip_rect();
        painter.add_clip_rect(text_rect);
        if (node_is_leaf(node)) {
            painter.draw_text(text_rect, node.name(), font(), Gfx::TextAlignment::TopLeft, Color::Black);
            text_rect.take_from_top(font().presentation_size() + 1);
            painter.draw_text(text_rect, human_readable_size(node.area()), font(), Gfx::TextAlignment::TopLeft, Color::Black);
        } else {
            painter.draw_text(text_rect, String::formatted("{} - {}", node.name(), human_readable_size(node.area())), font(), Gfx::TextAlignment::TopLeft, Color::Black);
        }
        painter.clear_clip_rect();
    }
}

template<typename Function>
void TreeMapWidget::lay_out_children(const TreeMapNode& node, const Gfx::IntRect& rect, int depth, Function callback)
{
    if (node.num_children() == 0) {
        return;
    }

    // Check if the children are sorted yet, if not do that now.
    for (size_t k = 0; k < node.num_children() - 1; k++) {
        if (node.child_at(k).area() < node.child_at(k + 1).area()) {
            node.sort_children_by_area();
            break;
        }
    }

    i64 total_area = node.area();
    Gfx::IntRect canvas = rect;
    bool remaining_nodes_are_too_small = false;
    for (size_t i = 0; !remaining_nodes_are_too_small && i < node.num_children(); i++) {
        const i64 i_node_area = node.child_at(i).area();
        if (i_node_area == 0)
            break;

        const size_t long_side_size = max(canvas.width(), canvas.height());
        const size_t short_side_size = min(canvas.width(), canvas.height());

        size_t row_or_column_size = long_side_size * i_node_area / total_area;
        i64 node_area_sum = i_node_area;
        size_t k = i + 1;

        // Try to add nodes to this row or column so long as the worst aspect ratio of
        // the new set of nodes is better than the worst aspect ratio of the current set.
        {
            float best_worst_aspect_ratio_so_far = get_normalized_aspect_ratio(row_or_column_size, short_side_size);
            for (; k < node.num_children(); k++) {
                // Do a preliminary calculation of the worst aspect ratio of the nodes at index i and k
                // if that aspect ratio is better than the 'best_worst_aspect_ratio_so_far' we keep it,
                // otherwise it is discarded.
                i64 k_node_area = node.child_at(k).area();
                if (k_node_area == 0) {
                    break;
                }
                i64 new_node_area_sum = node_area_sum + k_node_area;
                size_t new_row_or_column_size = long_side_size * new_node_area_sum / total_area;
                size_t i_node_size = short_side_size * i_node_area / new_node_area_sum;
                size_t k_node_size = short_side_size * k_node_area / new_node_area_sum;
                float i_node_aspect_ratio = get_normalized_aspect_ratio(new_row_or_column_size, i_node_size);
                float k_node_aspect_ratio = get_normalized_aspect_ratio(new_row_or_column_size, k_node_size);
                float new_worst_aspect_ratio = min(i_node_aspect_ratio, k_node_aspect_ratio);
                if (new_worst_aspect_ratio < best_worst_aspect_ratio_so_far) {
                    break;
                }
                best_worst_aspect_ratio_so_far = new_worst_aspect_ratio;
                node_area_sum = new_node_area_sum;
                row_or_column_size = new_row_or_column_size;
            }
        }

        // Paint the elements from 'i' up to and including 'k-1'.
        {
            const size_t fixed_side_size = row_or_column_size;
            i64 placement_area = node_area_sum;
            size_t main_dim = short_side_size;

            // Lay out nodes in a row or column.
            Orientation orientation = canvas.width() > canvas.height() ? Orientation::Horizontal : Orientation::Vertical;
            Gfx::IntRect layout_rect = canvas;
            layout_rect.set_primary_size_for_orientation(orientation, fixed_side_size);
            for (size_t q = i; q < k; q++) {
                auto& child = node.child_at(q);
                size_t node_size = main_dim * child.area() / placement_area;
                Gfx::IntRect cell_rect = layout_rect;
                cell_rect.set_secondary_size_for_orientation(orientation, node_size);
                Gfx::IntRect inner_rect;
                HasLabel has_label = HasLabel::No;
                if (child.num_children() != 0 && rect.height() >= 8 && rect.width() >= 8) {
                    inner_rect = cell_rect;
                    inner_rect.shrink(4, 4); // border and shading
                    if (rect_can_contain_label(inner_rect)) {
                        const int margin = 5;
                        has_label = HasLabel::Yes;
                        inner_rect.set_y(inner_rect.y() + font().presentation_size() + margin);
                        inner_rect.set_height(inner_rect.height() - (font().presentation_size() + margin * 2));
                        inner_rect.set_x(inner_rect.x() + margin);
                        inner_rect.set_width(inner_rect.width() - margin * 2);
                    }
                } else if (rect_can_contain_label(cell_rect)) {
                    has_label = HasLabel::Yes;
                }
                callback(child, q, cell_rect, inner_rect, depth, has_label, IsRemainder::No);
                if (cell_rect.width() * cell_rect.height() < 16) {
                    remaining_nodes_are_too_small = true;
                } else if (!inner_rect.is_empty()) {
                    lay_out_children(child, inner_rect, depth + 1, callback);
                }
                layout_rect.set_secondary_offset_for_orientation(orientation, layout_rect.secondary_offset_for_orientation(orientation) + node_size);
                main_dim -= node_size;
                placement_area -= child.area();
            }
            canvas.set_primary_offset_for_orientation(orientation, canvas.primary_offset_for_orientation(orientation) + fixed_side_size);
            canvas.set_primary_size_for_orientation(orientation, canvas.primary_size_for_orientation(orientation) - fixed_side_size);
        }

        // Consume nodes that were added to this row or column.
        i = k - 1;
        total_area -= node_area_sum;
    }

    // If not the entire canvas was filled with nodes, fill the remaining area with a dither pattern.
    if (!canvas.is_empty()) {
        callback(node, 0, canvas, Gfx::IntRect(), depth, HasLabel::No, IsRemainder::Yes);
    }
}

const TreeMapNode* TreeMapWidget::path_node(size_t n) const
{
    if (!m_tree.ptr())
        return nullptr;
    const TreeMapNode* iter = &m_tree->root();
    size_t path_index = 0;
    while (iter && path_index < m_path.size() && path_index < n) {
        size_t child_index = m_path[path_index];
        if (child_index >= iter->num_children()) {
            return nullptr;
        }
        iter = &iter->child_at(child_index);
        path_index++;
    }
    return iter;
}

void TreeMapWidget::paint_event(GUI::PaintEvent& event)
{
    GUI::Frame::paint_event(event);
    GUI::Painter painter(*this);

    m_selected_node_cache = path_node(m_path.size());

    const TreeMapNode* node = path_node(m_viewpoint);
    if (!node) {
        painter.fill_rect(frame_inner_rect(), Color::MidGray);
    } else if (node_is_leaf(*node)) {
        paint_cell_frame(painter, *node, frame_inner_rect(), Gfx::IntRect(), m_viewpoint - 1, HasLabel::Yes);
    } else {
        lay_out_children(*node, frame_inner_rect(), m_viewpoint, [&](const TreeMapNode& node, int, const Gfx::IntRect& rect, const Gfx::IntRect& inner_rect, int depth, HasLabel has_label, IsRemainder remainder) {
            if (remainder == IsRemainder::No) {
                paint_cell_frame(painter, node, rect, inner_rect, depth, has_label);
            } else {
                Color color = colors[depth % (sizeof(colors) / sizeof(colors[0]))];
                Gfx::IntRect dither_rect = rect;
                painter.fill_rect(dither_rect.take_from_right(1), Color::Black);
                painter.fill_rect(dither_rect.take_from_bottom(1), Color::Black);
                painter.fill_rect_with_dither_pattern(dither_rect, color, Color::Black);
            }
        });
    }
}

Vector<int> TreeMapWidget::path_to_position(const Gfx::IntPoint& position)
{
    const TreeMapNode* node = path_node(m_viewpoint);
    if (!node) {
        return {};
    }
    Vector<int> path;
    lay_out_children(*node, frame_inner_rect(), m_viewpoint, [&](const TreeMapNode&, int index, const Gfx::IntRect& rect, const Gfx::IntRect&, int, HasLabel, IsRemainder is_remainder) {
        if (is_remainder == IsRemainder::No && rect.contains(position)) {
            path.append(index);
        }
    });
    return path;
}

void TreeMapWidget::mousedown_event(GUI::MouseEvent& event)
{
    const TreeMapNode* node = path_node(m_viewpoint);
    if (node && !node_is_leaf(*node)) {
        Vector<int> path = path_to_position(event.position());
        if (!path.is_empty()) {
            m_path.shrink(m_viewpoint);
            m_path.extend(path);
            if (on_path_change) {
                on_path_change();
            }
            update();
        }
    }
}

void TreeMapWidget::doubleclick_event(GUI::MouseEvent& event)
{
    if (event.button() != GUI::MouseButton::Primary)
        return;
    const TreeMapNode* node = path_node(m_viewpoint);
    if (node && !node_is_leaf(*node)) {
        Vector<int> path = path_to_position(event.position());
        m_path.shrink(m_viewpoint);
        m_path.extend(path);
        m_viewpoint = m_path.size();
        if (on_path_change) {
            on_path_change();
        }
        update();
    }
}

void TreeMapWidget::keydown_event(GUI::KeyEvent& event)
{
    if (event.key() == KeyCode::Key_Left)
        set_viewpoint(m_viewpoint == 0 ? m_path.size() : m_viewpoint - 1);
    else if (event.key() == KeyCode::Key_Right)
        set_viewpoint(m_viewpoint == m_path.size() ? 0 : m_viewpoint + 1);
}

void TreeMapWidget::mousewheel_event(GUI::MouseEvent& event)
{
    int delta = event.wheel_delta_y();
    // FIXME: The wheel_delta_y is premultiplied in the window server, we actually want a raw value here.
    int step_size = GUI::ConnectionToWindowServer::the().get_scroll_step_size();
    if (delta > 0) {
        size_t step_back = delta / step_size;
        if (step_back > m_viewpoint)
            step_back = m_viewpoint;
        set_viewpoint(m_viewpoint - step_back);
    } else {
        size_t step_up = (-delta) / step_size;
        set_viewpoint(m_viewpoint + step_up);
    }
}

void TreeMapWidget::context_menu_event(GUI::ContextMenuEvent& context_menu_event)
{
    if (on_context_menu_request)
        on_context_menu_request(context_menu_event);
}

void TreeMapWidget::set_tree(RefPtr<TreeMap> tree)
{
    m_tree = tree;
    m_path.clear();
    m_viewpoint = 0;
    if (on_path_change) {
        on_path_change();
    }
    update();
}

void TreeMapWidget::set_viewpoint(size_t viewpoint)
{
    if (m_viewpoint == viewpoint)
        return;
    if (viewpoint > m_path.size())
        viewpoint = m_path.size();
    m_viewpoint = viewpoint;
    if (on_path_change) {
        on_path_change();
    }
    update();
}

size_t TreeMapWidget::path_size() const
{
    return m_path.size() + 1;
}

size_t TreeMapWidget::viewpoint() const
{
    return m_viewpoint;
}

}