1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
|
/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2019-2020, William McPherson <willmcpherson2@gmail.com>
* Copyright (c) 2021, kleines Filmröllchen <malu.bertsch@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "Track.h"
#include <AK/Math.h>
#include <AK/NumericLimits.h>
#include <LibAudio/Loader.h>
#include <LibDSP/Music.h>
#include <math.h>
Track::Track(const u32& time)
: m_time(time)
, m_temporary_transport(make_ref_counted<LibDSP::Transport>(120, 4))
, m_delay(make_ref_counted<LibDSP::Effects::Delay>(m_temporary_transport))
{
set_volume(volume_max);
set_sustain_impl(1000);
set_attack(5);
set_decay(1000);
set_release(5);
}
Track::~Track()
{
}
void Track::fill_sample(Sample& sample)
{
Audio::Frame new_sample;
for (size_t note = 0; note < note_count; ++note) {
if (!m_roll_iterators[note].is_end()) {
if (m_roll_iterators[note]->on_sample == m_time) {
set_note(note, On);
} else if (m_roll_iterators[note]->off_sample == m_time) {
set_note(note, Off);
++m_roll_iterators[note];
if (m_roll_iterators[note].is_end())
m_roll_iterators[note] = m_roll_notes[note].begin();
}
}
switch (m_envelope[note]) {
case Done:
continue;
case Attack:
m_power[note] += m_attack_step;
if (m_power[note] >= 1) {
m_power[note] = 1;
m_envelope[note] = Decay;
}
break;
case Decay:
m_power[note] -= m_decay_step;
if (m_power[note] < m_sustain_level)
m_power[note] = m_sustain_level;
break;
case Release:
m_power[note] -= m_release_step[note];
if (m_power[note] <= 0) {
m_power[note] = 0;
m_envelope[note] = Done;
continue;
}
break;
default:
VERIFY_NOT_REACHED();
}
Audio::Frame note_sample;
switch (m_wave) {
case Wave::Sine:
note_sample = sine(note);
break;
case Wave::Saw:
note_sample = saw(note);
break;
case Wave::Square:
note_sample = square(note);
break;
case Wave::Triangle:
note_sample = triangle(note);
break;
case Wave::Noise:
note_sample = noise(note);
break;
case Wave::RecordedSample:
note_sample = recorded_sample(note);
break;
default:
VERIFY_NOT_REACHED();
}
new_sample.left += note_sample.left * m_power[note] * volume_factor * (static_cast<double>(volume()) / volume_max);
new_sample.right += note_sample.right * m_power[note] * volume_factor * (static_cast<double>(volume()) / volume_max);
}
auto new_sample_dsp = LibDSP::Signal(LibDSP::Sample { new_sample.left / NumericLimits<i16>::max(), new_sample.right / NumericLimits<i16>::max() });
auto delayed_sample = m_delay->process(new_sample_dsp).get<LibDSP::Sample>();
new_sample.left = delayed_sample.left * NumericLimits<i16>::max();
new_sample.right = delayed_sample.right * NumericLimits<i16>::max();
sample.left += new_sample.left;
sample.right += new_sample.right;
}
void Track::reset()
{
memset(m_note_on, 0, sizeof(m_note_on));
memset(m_power, 0, sizeof(m_power));
memset(m_envelope, 0, sizeof(m_envelope));
for (size_t note = 0; note < note_count; ++note)
m_roll_iterators[note] = m_roll_notes[note].begin();
}
String Track::set_recorded_sample(const StringView& path)
{
NonnullRefPtr<Audio::Loader> loader = Audio::Loader::create(path);
if (loader->has_error())
return String(loader->error_string());
auto buffer = loader->get_more_samples(60 * loader->sample_rate()); // 1 minute maximum
if (loader->has_error())
return String(loader->error_string());
// Resample to Piano's internal sample rate
auto resampler = Audio::ResampleHelper<double>(loader->sample_rate(), sample_rate);
buffer = Audio::resample_buffer(resampler, *buffer);
if (!m_recorded_sample.is_empty())
m_recorded_sample.clear();
m_recorded_sample.resize(buffer->sample_count());
double peak = 0;
for (int i = 0; i < buffer->sample_count(); ++i) {
double left_abs = fabs(buffer->samples()[i].left);
double right_abs = fabs(buffer->samples()[i].right);
if (left_abs > peak)
peak = left_abs;
if (right_abs > peak)
peak = right_abs;
}
if (peak) {
for (int i = 0; i < buffer->sample_count(); ++i) {
m_recorded_sample[i].left = buffer->samples()[i].left / peak;
m_recorded_sample[i].right = buffer->samples()[i].right / peak;
}
}
return String::empty();
}
// All of the information for these waves is on Wikipedia.
Audio::Frame Track::sine(size_t note)
{
double pos = note_frequencies[note] / sample_rate;
double sin_step = pos * 2 * M_PI;
double w = sin(m_pos[note]);
m_pos[note] += sin_step;
return w;
}
Audio::Frame Track::saw(size_t note)
{
double saw_step = note_frequencies[note] / sample_rate;
double t = m_pos[note];
double w = (0.5 - (t - floor(t))) * 2;
m_pos[note] += saw_step;
return w;
}
Audio::Frame Track::square(size_t note)
{
double pos = note_frequencies[note] / sample_rate;
double square_step = pos * 2 * M_PI;
double w = AK::sin(m_pos[note]) >= 0 ? 1 : -1;
m_pos[note] += square_step;
return w;
}
Audio::Frame Track::triangle(size_t note)
{
double triangle_step = note_frequencies[note] / sample_rate;
double t = m_pos[note];
double w = AK::fabs(AK::fmod((4 * t) + 1, 4.) - 2) - 1.;
m_pos[note] += triangle_step;
return w;
}
Audio::Frame Track::noise(size_t note)
{
double step = note_frequencies[note] / sample_rate;
// m_pos keeps track of the time since the last random sample
m_pos[note] += step;
if (m_pos[note] > 0.05) {
double random_percentage = static_cast<double>(rand()) / RAND_MAX;
m_last_w[note] = (random_percentage * 2) - 1;
m_pos[note] = 0;
}
return m_last_w[note];
}
Audio::Frame Track::recorded_sample(size_t note)
{
int t = m_pos[note];
if (t >= static_cast<int>(m_recorded_sample.size()))
return 0;
double w_left = m_recorded_sample[t].left;
double w_right = m_recorded_sample[t].right;
if (t + 1 < static_cast<int>(m_recorded_sample.size())) {
double t_fraction = m_pos[note] - t;
w_left += (m_recorded_sample[t + 1].left - m_recorded_sample[t].left) * t_fraction;
w_right += (m_recorded_sample[t + 1].right - m_recorded_sample[t].right) * t_fraction;
}
double recorded_sample_step = note_frequencies[note] / middle_c;
m_pos[note] += recorded_sample_step;
return { w_left, w_right };
}
static inline double calculate_step(double distance, int milliseconds)
{
if (milliseconds == 0)
return distance;
constexpr double samples_per_millisecond = sample_rate / 1000.0;
double samples = milliseconds * samples_per_millisecond;
double step = distance / samples;
return step;
}
void Track::set_note(int note, Switch switch_note)
{
VERIFY(note >= 0 && note < note_count);
if (switch_note == On) {
if (m_note_on[note] == 0) {
m_pos[note] = 0;
m_envelope[note] = Attack;
}
++m_note_on[note];
} else {
if (m_note_on[note] >= 1) {
if (m_note_on[note] == 1) {
m_release_step[note] = calculate_step(m_power[note], m_release);
m_envelope[note] = Release;
}
--m_note_on[note];
}
}
VERIFY(m_note_on[note] != NumericLimits<u8>::max());
VERIFY(m_power[note] >= 0);
}
void Track::sync_roll(int note)
{
auto it = m_roll_notes[note].find_if([&](auto& roll_note) { return roll_note.off_sample > m_time; });
if (it.is_end())
m_roll_iterators[note] = m_roll_notes[note].begin();
else
m_roll_iterators[note] = it;
}
void Track::set_roll_note(int note, u32 on_sample, u32 off_sample)
{
RollNote new_roll_note = { on_sample, off_sample, (u8)note, 0 };
VERIFY(note >= 0 && note < note_count);
VERIFY(new_roll_note.off_sample < roll_length);
VERIFY(new_roll_note.length() >= 2);
for (auto it = m_roll_notes[note].begin(); !it.is_end();) {
if (it->on_sample > new_roll_note.off_sample) {
m_roll_notes[note].insert_before(it, new_roll_note);
sync_roll(note);
return;
}
if (it->on_sample <= new_roll_note.on_sample && it->off_sample >= new_roll_note.on_sample) {
if (m_time >= it->on_sample && m_time <= it->off_sample)
set_note(note, Off);
it.remove(m_roll_notes[note]);
sync_roll(note);
return;
}
if ((new_roll_note.on_sample == 0 || it->on_sample >= new_roll_note.on_sample - 1) && it->on_sample <= new_roll_note.off_sample) {
if (m_time >= new_roll_note.off_sample && m_time <= it->off_sample)
set_note(note, Off);
it.remove(m_roll_notes[note]);
it = m_roll_notes[note].begin();
continue;
}
++it;
}
m_roll_notes[note].append(new_roll_note);
sync_roll(note);
}
void Track::set_wave(int wave)
{
VERIFY(wave >= first_wave && wave <= last_wave);
m_wave = wave;
}
void Track::set_wave(Direction direction)
{
if (direction == Up) {
if (++m_wave > last_wave)
m_wave = first_wave;
} else {
if (--m_wave < first_wave)
m_wave = last_wave;
}
}
void Track::set_volume(int volume)
{
VERIFY(volume >= 0);
m_volume = volume;
}
void Track::set_attack(int attack)
{
VERIFY(attack >= 0);
m_attack = attack;
m_attack_step = calculate_step(1, m_attack);
}
void Track::set_decay(int decay)
{
VERIFY(decay >= 0);
m_decay = decay;
m_decay_step = calculate_step(1 - m_sustain_level, m_decay);
}
void Track::set_sustain_impl(int sustain)
{
VERIFY(sustain >= 0);
m_sustain = sustain;
m_sustain_level = sustain / 1000.0;
}
void Track::set_sustain(int sustain)
{
set_sustain_impl(sustain);
set_decay(m_decay);
}
void Track::set_release(int release)
{
VERIFY(release >= 0);
m_release = release;
}
|