summaryrefslogtreecommitdiff
path: root/Services/ChessEngine/MCTSTree.cpp
blob: 1724f7acd847100e52136f131eb0e0e74ff183fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/*
 * Copyright (c) 2020, the SerenityOS developers.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "MCTSTree.h"
#include <AK/String.h>
#include <stdlib.h>

MCTSTree::MCTSTree(const Chess::Board& board, double exploration_parameter, MCTSTree* parent)
    : m_parent(parent)
    , m_exploration_parameter(exploration_parameter)
    , m_board(board)
{
    if (m_parent)
        m_eval_method = m_parent->eval_method();
}

MCTSTree& MCTSTree::select_leaf()
{
    if (!expanded() || m_children.size() == 0)
        return *this;

    MCTSTree* node = nullptr;
    double max_uct = -double(INFINITY);
    for (auto& child : m_children) {
        double uct = child.uct(m_board.turn());
        if (uct >= max_uct) {
            max_uct = uct;
            node = &child;
        }
    }
    ASSERT(node);
    return node->select_leaf();
}

MCTSTree& MCTSTree::expand()
{
    ASSERT(!expanded() || m_children.size() == 0);

    if (!m_moves_generated) {
        m_board.generate_moves([&](Chess::Move move) {
            Chess::Board clone = m_board;
            clone.apply_move(move);
            m_children.append(make<MCTSTree>(clone, m_exploration_parameter, this));
            return IterationDecision::Continue;
        });
        m_moves_generated = true;
    }

    if (m_children.size() == 0) {
        return *this;
    }

    for (auto& child : m_children) {
        if (child.m_simulations == 0) {
            return child;
        }
    }
    ASSERT_NOT_REACHED();
}

int MCTSTree::simulate_game() const
{
    ASSERT_NOT_REACHED();
    Chess::Board clone = m_board;
    while (!clone.game_finished()) {
        clone.apply_move(clone.random_move());
    }
    return clone.game_score();
}

int MCTSTree::heuristic() const
{
    if (m_board.game_finished())
        return m_board.game_score();

    double winchance = max(min(double(m_board.material_imbalance()) / 6, 1.0), -1.0);

    double random = double(rand()) / RAND_MAX;
    if (winchance >= random)
        return 1;
    if (winchance <= -random)
        return -1;

    return 0;
}

void MCTSTree::apply_result(int game_score)
{
    m_simulations++;
    m_white_points += game_score;

    if (m_parent)
        m_parent->apply_result(game_score);
}

void MCTSTree::do_round()
{
    auto& node = select_leaf().expand();

    int result;
    if (m_eval_method == EvalMethod::Simulation) {
        result = node.simulate_game();
    } else {
        result = node.heuristic();
    }
    node.apply_result(result);
}

Chess::Move MCTSTree::best_move() const
{
    int score_multiplier = (m_board.turn() == Chess::Colour::White) ? 1 : -1;

    Chess::Move best_move = { { 0, 0 }, { 0, 0 } };
    double best_score = -double(INFINITY);
    ASSERT(m_children.size());
    for (auto& node : m_children) {
        double node_score = node.expected_value() * score_multiplier;
        if (node_score >= best_score) {
            // The best move is the last move made in the child.
            best_move = node.m_board.moves()[node.m_board.moves().size() - 1];
            best_score = node_score;
        }
    }

    return best_move;
}

double MCTSTree::expected_value() const
{
    if (m_simulations == 0)
        return 0;

    return double(m_white_points) / m_simulations;
}

double MCTSTree::uct(Chess::Colour colour) const
{
    // UCT: Upper Confidence Bound Applied to Trees.
    //      Kocsis, Levente; Szepesvári, Csaba (2006). "Bandit based Monte-Carlo Planning"

    // Fun fact: Szepesvári was my data structures professor.
    double expected = expected_value() * ((colour == Chess::Colour::White) ? 1 : -1);
    return expected + m_exploration_parameter * sqrt(log(m_parent->m_simulations) / m_simulations);
}

bool MCTSTree::expanded() const
{
    if (!m_moves_generated)
        return false;

    for (auto& child : m_children) {
        if (child.m_simulations == 0)
            return false;
    }

    return true;
}