summaryrefslogtreecommitdiff
path: root/Meta/Lagom/Fuzzers/FuzzilliJs.cpp
blob: d96353bb6b7c6cde443350ab4cf2dea60bfe7b7b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/*
 * Copyright (c) 2020, the SerenityOS developers.
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Function.h>
#include <AK/String.h>
#include <AK/StringView.h>
#include <LibJS/Forward.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Lexer.h>
#include <LibJS/Parser.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <errno.h>

#include <stddef.h>
#include <stdint.h>

#include <sys/mman.h>

#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>

//
// BEGIN FUZZING CODE
//

#define REPRL_CRFD 100
#define REPRL_CWFD 101
#define REPRL_DRFD 102
#define REPRL_DWFD 103
#define REPRL_MAX_DATA_SIZE (16 * 1024 * 1024)

#define SHM_SIZE 0x100000
#define MAX_EDGES ((SHM_SIZE - 4) * 8)

#define CHECK(cond)                                \
    if (!(cond)) {                                 \
        fprintf(stderr, "\"" #cond "\" failed\n"); \
        _exit(-1);                                 \
    }

struct shmem_data {
    uint32_t num_edges;
    unsigned char edges[];
};

struct shmem_data* __shmem;
uint32_t *__edges_start, *__edges_stop;

void __sanitizer_cov_reset_edgeguards()
{
    uint64_t N = 0;
    for (uint32_t* x = __edges_start; x < __edges_stop && N < MAX_EDGES; x++)
        *x = ++N;
}

extern "C" void __sanitizer_cov_trace_pc_guard_init(uint32_t* start, uint32_t* stop)
{
    // Avoid duplicate initialization
    if (start == stop || *start)
        return;

    if (__edges_start != NULL || __edges_stop != NULL) {
        fprintf(stderr, "Coverage instrumentation is only supported for a single module\n");
        _exit(-1);
    }

    __edges_start = start;
    __edges_stop = stop;

    // Map the shared memory region
    const char* shm_key = getenv("SHM_ID");
    if (!shm_key) {
        puts("[COV] no shared memory bitmap available, skipping");
        __shmem = (struct shmem_data*)malloc(SHM_SIZE);
    } else {
        int fd = shm_open(shm_key, O_RDWR, S_IREAD | S_IWRITE);
        if (fd <= -1) {
            fprintf(stderr, "Failed to open shared memory region: %s\n", strerror(errno));
            _exit(-1);
        }

        __shmem = (struct shmem_data*)mmap(0, SHM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
        if (__shmem == MAP_FAILED) {
            fprintf(stderr, "Failed to mmap shared memory region\n");
            _exit(-1);
        }
    }

    __sanitizer_cov_reset_edgeguards();

    __shmem->num_edges = stop - start;
    printf("[COV] edge counters initialized. Shared memory: %s with %u edges\n", shm_key, __shmem->num_edges);
}

extern "C" void __sanitizer_cov_trace_pc_guard(uint32_t* guard)
{
    // There's a small race condition here: if this function executes in two threads for the same
    // edge at the same time, the first thread might disable the edge (by setting the guard to zero)
    // before the second thread fetches the guard value (and thus the index). However, our
    // instrumentation ignores the first edge (see libcoverage.c) and so the race is unproblematic.
    uint32_t index = *guard;
    // If this function is called before coverage instrumentation is properly initialized we want to return early.
    if (!index)
        return;
    __shmem->edges[index / 8] |= 1 << (index % 8);
    *guard = 0;
}

//
// END FUZZING CODE
//

class TestRunnerGlobalObject final : public JS::GlobalObject {
    JS_OBJECT(TestRunnerGlobalObject, JS::GlobalObject);

public:
    TestRunnerGlobalObject();
    virtual ~TestRunnerGlobalObject() override;

    virtual void initialize_global_object() override;

private:
    JS_DECLARE_NATIVE_FUNCTION(fuzzilli);
};

TestRunnerGlobalObject::TestRunnerGlobalObject()
{
}

TestRunnerGlobalObject::~TestRunnerGlobalObject()
{
}

JS_DEFINE_NATIVE_FUNCTION(TestRunnerGlobalObject::fuzzilli)
{
    if (!vm.argument_count())
        return JS::js_undefined();

    auto operation = TRY(vm.argument(0).to_string(global_object));
    if (operation == "FUZZILLI_CRASH") {
        auto type = TRY(vm.argument(1).to_i32(global_object));
        switch (type) {
        case 0:
            *((int*)0x41414141) = 0x1337;
            break;
        default:
            VERIFY_NOT_REACHED();
            break;
        }
    } else if (operation == "FUZZILLI_PRINT") {
        static FILE* fzliout = fdopen(REPRL_DWFD, "w");
        if (!fzliout) {
            dbgln("Fuzzer output not available");
            fzliout = stdout;
        }

        auto string = TRY(vm.argument(1).to_string(global_object));
        fprintf(fzliout, "%s\n", string.characters());
        fflush(fzliout);
    }

    return JS::js_undefined();
}

void TestRunnerGlobalObject::initialize_global_object()
{
    Base::initialize_global_object();
    define_direct_property("global", this, JS::Attribute::Enumerable);
    define_native_function("fuzzilli", fuzzilli, 2, JS::default_attributes);
}

int main(int, char**)
{
    char* reprl_input = nullptr;

    char helo[] = "HELO";
    if (write(REPRL_CWFD, helo, 4) != 4 || read(REPRL_CRFD, helo, 4) != 4) {
        VERIFY_NOT_REACHED();
    }

    VERIFY(memcmp(helo, "HELO", 4) == 0);
    reprl_input = (char*)mmap(0, REPRL_MAX_DATA_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, REPRL_DRFD, 0);
    VERIFY(reprl_input != MAP_FAILED);

    auto vm = JS::VM::create();
    auto interpreter = JS::Interpreter::create<TestRunnerGlobalObject>(*vm);

    while (true) {
        unsigned action;
        VERIFY(read(REPRL_CRFD, &action, 4) == 4);
        VERIFY(action == 'cexe');

        size_t script_size;
        VERIFY(read(REPRL_CRFD, &script_size, 8) == 8);
        VERIFY(script_size < REPRL_MAX_DATA_SIZE);
        ByteBuffer data_buffer;
        data_buffer.resize(script_size);
        VERIFY(data_buffer.size() >= script_size);
        memcpy(data_buffer.data(), reprl_input, script_size);

        int result = 0;

        auto js = StringView(static_cast<const unsigned char*>(data_buffer.data()), script_size);

        auto parse_result = JS::Script::parse(js, interpreter->realm());
        if (parse_result.is_error()) {
            result = 1;
        } else {
            auto completion = interpreter->run(parse_result.value());
            if (completion.is_error()) {
                result = 1;
            }
        }

        fflush(stdout);
        fflush(stderr);

        int status = (result & 0xff) << 8;
        VERIFY(write(REPRL_CWFD, &status, 4) == 4);
        __sanitizer_cov_reset_edgeguards();
    }

    return 0;
}