1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
|
/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <LibC/assert.h>
#include <LibM/math.h>
#include <stdint.h>
#include <stdlib.h>
template<size_t>
constexpr double e_to_power();
template<>
constexpr double e_to_power<0>() { return 1; }
template<size_t exponent>
constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
template<size_t>
constexpr size_t factorial();
template<>
constexpr size_t factorial<0>() { return 1; }
template<size_t value>
constexpr size_t factorial() { return value * factorial<value - 1>(); }
template<size_t>
constexpr size_t product_even();
template<>
constexpr size_t product_even<2>() { return 2; }
template<size_t value>
constexpr size_t product_even() { return value * product_even<value - 2>(); }
template<size_t>
constexpr size_t product_odd();
template<>
constexpr size_t product_odd<1>() { return 1; }
template<size_t value>
constexpr size_t product_odd() { return value * product_odd<value - 2>(); }
extern "C" {
double trunc(double x)
{
return (int64_t)x;
}
double cos(double angle)
{
return sin(angle + M_PI_2);
}
float cosf(float angle)
{
return sinf(angle + M_PI_2);
}
// This can also be done with a taylor expansion, but for
// now this works pretty well (and doesn't mess anything up
// in quake in particular, which is very Floating-Point precision
// heavy)
double sin(double angle)
{
double ret = 0.0;
__asm__(
"fsin"
: "=t"(ret)
: "0"(angle));
return ret;
}
float sinf(float angle)
{
float ret = 0.0f;
__asm__(
"fsin"
: "=t"(ret)
: "0"(angle));
return ret;
}
double pow(double x, double y)
{
//FIXME: Extremely unlikely to be standards compliant.
return exp(y * log(x));
}
float powf(float x, float y)
{
return (float)exp((double)y * log((double)x));
}
double ldexp(double x, int exp)
{
// FIXME: Please fix me. I am naive.
double val = pow(2, exp);
return x * val;
}
double tanh(double x)
{
if (x > 0) {
double exponentiated = exp(2 * x);
return (exponentiated - 1) / (exponentiated + 1);
}
double plusX = exp(x);
double minusX = 1 / plusX;
return (plusX - minusX) / (plusX + minusX);
}
double ampsin(double angle)
{
double looped_angle = fmod(M_PI + angle, M_TAU) - M_PI;
double looped_angle_squared = looped_angle * looped_angle;
double quadratic_term;
if (looped_angle > 0) {
quadratic_term = -looped_angle_squared;
} else {
quadratic_term = looped_angle_squared;
}
double linear_term = M_PI * looped_angle;
return quadratic_term + linear_term;
}
double tan(double angle)
{
return ampsin(angle) / ampsin(M_PI_2 + angle);
}
double sqrt(double x)
{
double res;
__asm__("fsqrt"
: "=t"(res)
: "0"(x));
return res;
}
float sqrtf(float x)
{
float res;
__asm__("fsqrt"
: "=t"(res)
: "0"(x));
return res;
}
double sinh(double x)
{
double exponentiated = exp(x);
if (x > 0)
return (exponentiated * exponentiated - 1) / 2 / exponentiated;
return (exponentiated - 1 / exponentiated) / 2;
}
double log10(double x)
{
return log(x) / M_LN10;
}
double log(double x)
{
if (x < 0)
return __builtin_nan("");
if (x == 0)
return -__builtin_huge_val();
double y = 1 + 2 * (x - 1) / (x + 1);
double exponentiated = exp(y);
y = y + 2 * (x - exponentiated) / (x + exponentiated);
exponentiated = exp(y);
y = y + 2 * (x - exponentiated) / (x + exponentiated);
exponentiated = exp(y);
return y + 2 * (x - exponentiated) / (x + exponentiated);
}
float logf(float x)
{
return (float)log(x);
}
double fmod(double index, double period)
{
return index - trunc(index / period) * period;
}
double exp(double exponent)
{
double result = 1;
if (exponent >= 1) {
size_t integer_part = (size_t)exponent;
if (integer_part & 1)
result *= e_to_power<1>();
if (integer_part & 2)
result *= e_to_power<2>();
if (integer_part > 3) {
if (integer_part & 4)
result *= e_to_power<4>();
if (integer_part & 8)
result *= e_to_power<8>();
if (integer_part & 16)
result *= e_to_power<16>();
if (integer_part & 32)
result *= e_to_power<32>();
if (integer_part >= 64)
return __builtin_huge_val();
}
exponent -= integer_part;
} else if (exponent < 0)
return 1 / exp(-exponent);
double taylor_series_result = 1 + exponent;
double taylor_series_numerator = exponent * exponent;
taylor_series_result += taylor_series_numerator / factorial<2>();
taylor_series_numerator *= exponent;
taylor_series_result += taylor_series_numerator / factorial<3>();
taylor_series_numerator *= exponent;
taylor_series_result += taylor_series_numerator / factorial<4>();
taylor_series_numerator *= exponent;
taylor_series_result += taylor_series_numerator / factorial<5>();
return result * taylor_series_result;
}
float expf(float exponent)
{
return (float)exp(exponent);
}
double cosh(double x)
{
double exponentiated = exp(-x);
if (x < 0)
return (1 + exponentiated * exponentiated) / 2 / exponentiated;
return (1 / exponentiated + exponentiated) / 2;
}
double atan2(double y, double x)
{
if (x > 0)
return atan(y / x);
if (x == 0) {
if (y > 0)
return M_PI_2;
if (y < 0)
return -M_PI_2;
return 0;
}
if (y >= 0)
return atan(y / x) + M_PI;
return atan(y / x) - M_PI;
}
float atan2f(float y, float x)
{
return (float)atan2(y, x);
}
double atan(double x)
{
if (x < 0)
return -atan(-x);
if (x > 1)
return M_PI_2 - atan(1 / x);
double squared = x * x;
return x / (1 + 1 * 1 * squared / (3 + 2 * 2 * squared / (5 + 3 * 3 * squared / (7 + 4 * 4 * squared / (9 + 5 * 5 * squared / (11 + 6 * 6 * squared / (13 + 7 * 7 * squared)))))));
}
double asin(double x)
{
if (x > 1 || x < -1)
return __builtin_nan("");
if (x > 0.5 || x < -0.5)
return 2 * atan(x / (1 + sqrt(1 - x * x)));
double squared = x * x;
double value = x;
double i = x * squared;
value += i * product_odd<1>() / product_even<2>() / 3;
i *= squared;
value += i * product_odd<3>() / product_even<4>() / 5;
i *= squared;
value += i * product_odd<5>() / product_even<6>() / 7;
i *= squared;
value += i * product_odd<7>() / product_even<8>() / 9;
i *= squared;
value += i * product_odd<9>() / product_even<10>() / 11;
i *= squared;
value += i * product_odd<11>() / product_even<12>() / 13;
return value;
}
float asinf(float x)
{
return (float)asin(x);
}
double acos(double x)
{
return M_PI_2 - asin(x);
}
float acosf(float x)
{
return M_PI_2 - asinf(x);
}
double fabs(double value)
{
return value < 0 ? -value : value;
}
double log2(double x)
{
return log(x) / M_LN2;
}
float log2f(float x)
{
return log2(x);
}
long double log2l(long double x)
{
return log2(x);
}
double frexp(double, int*)
{
ASSERT_NOT_REACHED();
return 0;
}
float frexpf(float, int*)
{
ASSERT_NOT_REACHED();
return 0;
}
long double frexpl(long double, int*)
{
ASSERT_NOT_REACHED();
return 0;
}
float roundf(float value)
{
// FIXME: Please fix me. I am naive.
if (value >= 0.0f)
return (float)(int)(value + 0.5f);
return (float)(int)(value - 0.5f);
}
double floor(double value)
{
return (int)value;
}
double rint(double value)
{
return (int)roundf(value);
}
float ceilf(float value)
{
// FIXME: Please fix me. I am naive.
int as_int = (int)value;
if (value == (float)as_int) {
return (float)as_int;
}
return as_int + 1;
}
double ceil(double value)
{
// FIXME: Please fix me. I am naive.
int as_int = (int)value;
if (value == (double)as_int) {
return (double)as_int;
}
return as_int + 1;
}
double modf(double x, double* intpart)
{
*intpart = (double)((int)(x));
return x - (int)x;
}
}
|