summaryrefslogtreecommitdiff
path: root/Libraries/LibJS/Interpreter.cpp
blob: 4dbd06bdf4cb52312cfc1394a69393f426c722d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/*
 * Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <AK/Badge.h>
#include <LibJS/AST.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/ArrayPrototype.h>
#include <LibJS/Runtime/BooleanPrototype.h>
#include <LibJS/Runtime/DatePrototype.h>
#include <LibJS/Runtime/Error.h>
#include <LibJS/Runtime/ErrorPrototype.h>
#include <LibJS/Runtime/FunctionPrototype.h>
#include <LibJS/Runtime/GlobalObject.h>
#include <LibJS/Runtime/LexicalEnvironment.h>
#include <LibJS/Runtime/NativeFunction.h>
#include <LibJS/Runtime/NumberPrototype.h>
#include <LibJS/Runtime/Object.h>
#include <LibJS/Runtime/ObjectPrototype.h>
#include <LibJS/Runtime/Shape.h>
#include <LibJS/Runtime/StringPrototype.h>
#include <LibJS/Runtime/Value.h>

namespace JS {

Interpreter::Interpreter()
    : m_heap(*this)
{
    m_empty_object_shape = heap().allocate<Shape>();

    // These are done first since other prototypes depend on their presence.
    m_object_prototype = heap().allocate<ObjectPrototype>();
    m_function_prototype = heap().allocate<FunctionPrototype>();

#define __JS_ENUMERATE(ClassName, snake_name, PrototypeName, ConstructorName) \
    if (!m_##snake_name##_prototype)                                          \
        m_##snake_name##_prototype = heap().allocate<PrototypeName>();
    JS_ENUMERATE_BUILTIN_TYPES
#undef __JS_ENUMERATE
}

Interpreter::~Interpreter()
{
}

Value Interpreter::run(const Statement& statement, ArgumentVector arguments, ScopeType scope_type)
{
    if (statement.is_program()) {
        if (m_call_stack.is_empty()) {
            CallFrame global_call_fram;
            global_call_fram.this_value = m_global_object;
            global_call_fram.function_name = "(global execution context)";
            global_call_fram.environment = heap().allocate<LexicalEnvironment>();
            m_call_stack.append(move(global_call_fram));
        }
    }

    if (!statement.is_scope_node())
        return statement.execute(*this);

    auto& block = static_cast<const ScopeNode&>(statement);
    enter_scope(block, move(arguments), scope_type);

    m_last_value = js_undefined();
    for (auto& node : block.children()) {
        m_last_value = node.execute(*this);
        if (m_unwind_until != ScopeType::None)
            break;
    }

    bool did_return = m_unwind_until == ScopeType::Function;

    if (m_unwind_until == scope_type)
        m_unwind_until = ScopeType::None;

    exit_scope(block);

    return did_return ? m_last_value : js_undefined();
}

void Interpreter::enter_scope(const ScopeNode& scope_node, ArgumentVector arguments, ScopeType scope_type)
{
    if (scope_type == ScopeType::Function) {
        m_scope_stack.append({ scope_type, scope_node, false });
        return;
    }

    HashMap<FlyString, Variable> scope_variables_with_declaration_kind;
    scope_variables_with_declaration_kind.ensure_capacity(16);

    for (auto& declaration : scope_node.variables()) {
        for (auto& declarator : declaration.declarations()) {
            if (scope_node.is_program())
                global_object().put(declarator.id().string(), js_undefined());
            else
                scope_variables_with_declaration_kind.set(declarator.id().string(), { js_undefined(), declaration.declaration_kind() });
        }
    }

    for (auto& argument : arguments) {
        scope_variables_with_declaration_kind.set(argument.name, { argument.value, DeclarationKind::Var });
    }

    bool pushed_lexical_environment = false;

    if (scope_type != ScopeType::Function) {
        // only a block, but maybe it has block-scoped variables!
        if (!scope_variables_with_declaration_kind.is_empty()) {
            auto* block_lexical_environment = heap().allocate<LexicalEnvironment>(move(scope_variables_with_declaration_kind), current_environment());
            m_call_stack.last().environment = block_lexical_environment;
            pushed_lexical_environment = true;
        }
    } else if (scope_type == ScopeType::Function) {
        for (auto& it : scope_variables_with_declaration_kind) {
            current_environment()->set(it.key, it.value);
        }
    }

    m_scope_stack.append({ scope_type, scope_node, pushed_lexical_environment });
}

void Interpreter::exit_scope(const ScopeNode& scope_node)
{
    while (!m_scope_stack.is_empty()) {
        auto popped_scope = m_scope_stack.take_last();
        if (popped_scope.pushed_environment)
            m_call_stack.last().environment = m_call_stack.last().environment->parent();
        if (popped_scope.scope_node.ptr() == &scope_node)
            break;
    }

    // If we unwind all the way, just reset m_unwind_until so that future "return" doesn't break.
    if (m_scope_stack.is_empty())
        m_unwind_until = ScopeType::None;
}

void Interpreter::set_variable(const FlyString& name, Value value, bool first_assignment)
{
    for (auto* environment = current_environment(); environment; environment = environment->parent()) {
        auto possible_match = environment->get(name);
        if (possible_match.has_value()) {
            if (!first_assignment && possible_match.value().declaration_kind == DeclarationKind::Const) {
                throw_exception<TypeError>("Assignment to constant variable");
                return;
            }

            environment->set(name, { value, possible_match.value().declaration_kind });
            return;
        }
    }

    global_object().put(move(name), move(value));
}

Optional<Value> Interpreter::get_variable(const FlyString& name)
{
    for (auto* environment = current_environment(); environment; environment = environment->parent()) {
        auto possible_match = environment->get(name);
        if (possible_match.has_value())
            return possible_match.value().value;
    }
    return global_object().get(name);
}

void Interpreter::gather_roots(Badge<Heap>, HashTable<Cell*>& roots)
{
    roots.set(m_empty_object_shape);
    roots.set(m_global_object);
    roots.set(m_exception);

#define __JS_ENUMERATE(ClassName, snake_name, PrototypeName, ConstructorName) \
    roots.set(m_##snake_name##_prototype);
    JS_ENUMERATE_BUILTIN_TYPES
#undef __JS_ENUMERATE

    if (m_last_value.is_cell())
        roots.set(m_last_value.as_cell());

    for (auto& call_frame : m_call_stack) {
        if (call_frame.this_value.is_cell())
            roots.set(call_frame.this_value.as_cell());
        for (auto& argument : call_frame.arguments) {
            if (argument.is_cell())
                roots.set(argument.as_cell());
        }
        roots.set(call_frame.environment);
    }
}

Value Interpreter::call(Function* function, Value this_value, const Vector<Value>& arguments)
{
    auto& call_frame = push_call_frame();
    call_frame.function_name = function->name();
    call_frame.this_value = this_value;
    call_frame.arguments = arguments;
    call_frame.environment = function->create_environment();
    auto result = function->call(*this);
    pop_call_frame();
    return result;
}

Value Interpreter::throw_exception(Exception* exception)
{
    if (exception->value().is_object() && exception->value().as_object().is_error()) {
        auto& error = static_cast<Error&>(exception->value().as_object());
        dbg() << "Throwing JavaScript Error: " << error.name() << ", " << error.message();
    }
    m_exception = exception;
    unwind(ScopeType::Try);
    return {};
}

GlobalObject& Interpreter::global_object()
{
    return static_cast<GlobalObject&>(*m_global_object);
}

const GlobalObject& Interpreter::global_object() const
{
    return static_cast<const GlobalObject&>(*m_global_object);
}

}