summaryrefslogtreecommitdiff
path: root/Kernel/kmalloc.cpp
blob: 4985f84647ec466e22b24780139a7c5dc0b75ae9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/*
 * Really really *really* Q&D malloc() and free() implementations
 * just to get going. Don't ever let anyone see this shit. :^)
 */

#include <AK/Assertions.h>
#include <AK/Types.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/KSyms.h>
#include <Kernel/Process.h>
#include <Kernel/Scheduler.h>
#include <Kernel/StdLib.h>
#include <Kernel/kmalloc.h>

#define SANITIZE_KMALLOC

struct [[gnu::packed]] allocation_t
{
    size_t start;
    size_t nchunk;
};

#define CHUNK_SIZE 32
#define POOL_SIZE (1024 * 1024)

#define ETERNAL_BASE_PHYSICAL (1 * MB)
#define ETERNAL_RANGE_SIZE (2 * MB)

#define BASE_PHYSICAL (3 * MB)
#define RANGE_SIZE (1 * MB)

static u8 alloc_map[POOL_SIZE / CHUNK_SIZE / 8];

volatile size_t sum_alloc = 0;
volatile size_t sum_free = POOL_SIZE;
volatile size_t kmalloc_sum_eternal = 0;

u32 g_kmalloc_call_count;
u32 g_kfree_call_count;
bool g_dump_kmalloc_stacks;

static u8* s_next_eternal_ptr;
static u8* s_end_of_eternal_range;

bool is_kmalloc_address(const void* ptr)
{
    if (ptr >= (u8*)ETERNAL_BASE_PHYSICAL && ptr < s_next_eternal_ptr)
        return true;
    return (size_t)ptr >= BASE_PHYSICAL && (size_t)ptr <= (BASE_PHYSICAL + POOL_SIZE);
}

void kmalloc_init()
{
    memset(&alloc_map, 0, sizeof(alloc_map));
    memset((void*)BASE_PHYSICAL, 0, POOL_SIZE);

    kmalloc_sum_eternal = 0;
    sum_alloc = 0;
    sum_free = POOL_SIZE;

    s_next_eternal_ptr = (u8*)ETERNAL_BASE_PHYSICAL;
    s_end_of_eternal_range = s_next_eternal_ptr + ETERNAL_RANGE_SIZE;
}

void* kmalloc_eternal(size_t size)
{
    void* ptr = s_next_eternal_ptr;
    s_next_eternal_ptr += size;
    ASSERT(s_next_eternal_ptr < s_end_of_eternal_range);
    kmalloc_sum_eternal += size;
    return ptr;
}

void* kmalloc_aligned(size_t size, size_t alignment)
{
    void* ptr = kmalloc(size + alignment + sizeof(void*));
    size_t max_addr = (size_t)ptr + alignment;
    void* aligned_ptr = (void*)(max_addr - (max_addr % alignment));
    ((void**)aligned_ptr)[-1] = ptr;
    return aligned_ptr;
}

void kfree_aligned(void* ptr)
{
    kfree(((void**)ptr)[-1]);
}

void* kmalloc_page_aligned(size_t size)
{
    void* ptr = kmalloc_aligned(size, PAGE_SIZE);
    size_t d = (size_t)ptr;
    ASSERT((d & PAGE_MASK) == d);
    return ptr;
}

void* kmalloc_impl(size_t size)
{
    InterruptDisabler disabler;
    ++g_kmalloc_call_count;

    if (g_dump_kmalloc_stacks && ksyms_ready) {
        dbgprintf("kmalloc(%u)\n", size);
        dump_backtrace();
    }

    // We need space for the allocation_t structure at the head of the block.
    size_t real_size = size + sizeof(allocation_t);

    if (sum_free < real_size) {
        dump_backtrace();
        kprintf("%s(%u) kmalloc(): PANIC! Out of memory (sucks, dude)\nsum_free=%u, real_size=%u\n", current->process().name().characters(), current->pid(), sum_free, real_size);
        hang();
    }

    size_t chunks_needed = real_size / CHUNK_SIZE;
    if (real_size % CHUNK_SIZE)
        ++chunks_needed;

    size_t chunks_here = 0;
    size_t first_chunk = 0;

    for (size_t i = 0; i < (POOL_SIZE / CHUNK_SIZE / 8); ++i) {
        if (alloc_map[i] == 0xff) {
            // Skip over completely full bucket.
            chunks_here = 0;
            continue;
        }
        // FIXME: This scan can be optimized further with LZCNT.
        for (size_t j = 0; j < 8; ++j) {
            if (!(alloc_map[i] & (1 << j))) {
                if (chunks_here == 0) {
                    // Mark where potential allocation starts.
                    first_chunk = i * 8 + j;
                }

                ++chunks_here;

                if (chunks_here == chunks_needed) {
                    auto* a = (allocation_t*)(BASE_PHYSICAL + (first_chunk * CHUNK_SIZE));
                    u8* ptr = (u8*)a;
                    ptr += sizeof(allocation_t);
                    a->nchunk = chunks_needed;
                    a->start = first_chunk;

                    for (size_t k = first_chunk; k < (first_chunk + chunks_needed); ++k) {
                        alloc_map[k / 8] |= 1 << (k % 8);
                    }

                    sum_alloc += a->nchunk * CHUNK_SIZE;
                    sum_free -= a->nchunk * CHUNK_SIZE;
#ifdef SANITIZE_KMALLOC
                    memset(ptr, 0xbb, (a->nchunk * CHUNK_SIZE) - sizeof(allocation_t));
#endif
                    return ptr;
                }
            } else {
                // This is in use, so restart chunks_here counter.
                chunks_here = 0;
            }
        }
    }

    kprintf("%s(%u) kmalloc(): PANIC! Out of memory (no suitable block for size %u)\n", current->process().name().characters(), current->pid(), size);
    dump_backtrace();
    hang();
}

void kfree(void* ptr)
{
    if (!ptr)
        return;

    InterruptDisabler disabler;
    ++g_kfree_call_count;

    auto* a = (allocation_t*)((((u8*)ptr) - sizeof(allocation_t)));

    for (size_t k = a->start; k < (a->start + a->nchunk); ++k)
        alloc_map[k / 8] &= ~(1 << (k % 8));

    sum_alloc -= a->nchunk * CHUNK_SIZE;
    sum_free += a->nchunk * CHUNK_SIZE;

#ifdef SANITIZE_KMALLOC
    memset(a, 0xaa, a->nchunk * CHUNK_SIZE);
#endif
}

void* operator new(size_t size)
{
    return kmalloc(size);
}

void* operator new[](size_t size)
{
    return kmalloc(size);
}

void operator delete(void* ptr)
{
    return kfree(ptr);
}

void operator delete[](void* ptr)
{
    return kfree(ptr);
}

void operator delete(void* ptr, size_t)
{
    return kfree(ptr);
}

void operator delete[](void* ptr, size_t)
{
    return kfree(ptr);
}