1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
|
/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Types.h>
#include <Kernel/Arch/InterruptManagement.h>
#include <Kernel/Arch/Processor.h>
#include <Kernel/BootInfo.h>
#include <Kernel/Bus/PCI/Access.h>
#include <Kernel/Bus/PCI/Initializer.h>
#include <Kernel/Bus/USB/USBManagement.h>
#include <Kernel/Bus/VirtIO/Device.h>
#include <Kernel/CMOS.h>
#include <Kernel/CommandLine.h>
#include <Kernel/Devices/Audio/Management.h>
#include <Kernel/Devices/DeviceControlDevice.h>
#include <Kernel/Devices/DeviceManagement.h>
#include <Kernel/Devices/FullDevice.h>
#include <Kernel/Devices/HID/HIDManagement.h>
#include <Kernel/Devices/KCOVDevice.h>
#include <Kernel/Devices/MemoryDevice.h>
#include <Kernel/Devices/NullDevice.h>
#include <Kernel/Devices/PCISerialDevice.h>
#include <Kernel/Devices/RandomDevice.h>
#include <Kernel/Devices/SelfTTYDevice.h>
#include <Kernel/Devices/SerialDevice.h>
#include <Kernel/Devices/ZeroDevice.h>
#include <Kernel/FileSystem/Ext2FileSystem.h>
#include <Kernel/FileSystem/SysFS.h>
#include <Kernel/FileSystem/SysFS/Subsystems/Firmware/Directory.h>
#include <Kernel/FileSystem/VirtualFileSystem.h>
#include <Kernel/Firmware/ACPI/Initialize.h>
#include <Kernel/Firmware/ACPI/Parser.h>
#include <Kernel/Firmware/Hypervisor/VMWareBackdoor.h>
#include <Kernel/Graphics/Console/BootFramebufferConsole.h>
#include <Kernel/Graphics/Console/VGATextModeConsole.h>
#include <Kernel/Graphics/GraphicsManagement.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/Interrupts/APIC.h>
#include <Kernel/Interrupts/PIC.h>
#include <Kernel/KSyms.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Multiboot.h>
#include <Kernel/Net/NetworkTask.h>
#include <Kernel/Net/NetworkingManagement.h>
#include <Kernel/Panic.h>
#include <Kernel/Prekernel/Prekernel.h>
#include <Kernel/Process.h>
#include <Kernel/ProcessExposed.h>
#include <Kernel/RTC.h>
#include <Kernel/Random.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Sections.h>
#include <Kernel/Storage/StorageManagement.h>
#include <Kernel/TTY/ConsoleManagement.h>
#include <Kernel/TTY/PTYMultiplexer.h>
#include <Kernel/TTY/VirtualConsole.h>
#include <Kernel/Tasks/FinalizerTask.h>
#include <Kernel/Tasks/SyncTask.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/WorkQueue.h>
#include <Kernel/kstdio.h>
// Defined in the linker script
typedef void (*ctor_func_t)();
extern ctor_func_t start_heap_ctors[];
extern ctor_func_t end_heap_ctors[];
extern ctor_func_t start_ctors[];
extern ctor_func_t end_ctors[];
extern size_t __stack_chk_guard;
READONLY_AFTER_INIT size_t __stack_chk_guard __attribute__((used));
extern "C" u8 start_of_safemem_text[];
extern "C" u8 end_of_safemem_text[];
extern "C" u8 start_of_safemem_atomic_text[];
extern "C" u8 end_of_safemem_atomic_text[];
extern "C" u8 end_of_kernel_image[];
multiboot_module_entry_t multiboot_copy_boot_modules_array[16];
size_t multiboot_copy_boot_modules_count;
READONLY_AFTER_INIT bool g_in_early_boot;
namespace Kernel {
[[noreturn]] static void init_stage2(void*);
static void setup_serial_debug();
// boot.S expects these functions to exactly have the following signatures.
// We declare them here to ensure their signatures don't accidentally change.
extern "C" void init_finished(u32 cpu) __attribute__((used));
extern "C" [[noreturn]] void init_ap(FlatPtr cpu, Processor* processor_info);
extern "C" [[noreturn]] void init(BootInfo const&);
READONLY_AFTER_INIT VirtualConsole* tty0;
ProcessID g_init_pid { 0 };
ALWAYS_INLINE static Processor& bsp_processor()
{
// This solves a problem where the bsp Processor instance
// gets "re"-initialized in init() when we run all global constructors.
alignas(Processor) static u8 bsp_processor_storage[sizeof(Processor)];
return (Processor&)bsp_processor_storage;
}
// SerenityOS Kernel C++ entry point :^)
//
// This is where C++ execution begins, after boot.S transfers control here.
//
// The purpose of init() is to start multi-tasking. It does the bare minimum
// amount of work needed to start the scheduler.
//
// Once multi-tasking is ready, we spawn a new thread that starts in the
// init_stage2() function. Initialization continues there.
extern "C" {
READONLY_AFTER_INIT PhysicalAddress start_of_prekernel_image;
READONLY_AFTER_INIT PhysicalAddress end_of_prekernel_image;
READONLY_AFTER_INIT size_t physical_to_virtual_offset;
READONLY_AFTER_INIT FlatPtr kernel_mapping_base;
READONLY_AFTER_INIT FlatPtr kernel_load_base;
#if ARCH(X86_64)
READONLY_AFTER_INIT PhysicalAddress boot_pml4t;
#endif
READONLY_AFTER_INIT PhysicalAddress boot_pdpt;
READONLY_AFTER_INIT PhysicalAddress boot_pd0;
READONLY_AFTER_INIT PhysicalAddress boot_pd_kernel;
READONLY_AFTER_INIT PageTableEntry* boot_pd_kernel_pt1023;
READONLY_AFTER_INIT char const* kernel_cmdline;
READONLY_AFTER_INIT u32 multiboot_flags;
READONLY_AFTER_INIT multiboot_memory_map_t* multiboot_memory_map;
READONLY_AFTER_INIT size_t multiboot_memory_map_count;
READONLY_AFTER_INIT multiboot_module_entry_t* multiboot_modules;
READONLY_AFTER_INIT size_t multiboot_modules_count;
READONLY_AFTER_INIT PhysicalAddress multiboot_framebuffer_addr;
READONLY_AFTER_INIT u32 multiboot_framebuffer_pitch;
READONLY_AFTER_INIT u32 multiboot_framebuffer_width;
READONLY_AFTER_INIT u32 multiboot_framebuffer_height;
READONLY_AFTER_INIT u8 multiboot_framebuffer_bpp;
READONLY_AFTER_INIT u8 multiboot_framebuffer_type;
}
Atomic<Graphics::Console*> g_boot_console;
extern "C" [[noreturn]] UNMAP_AFTER_INIT void init(BootInfo const& boot_info)
{
g_in_early_boot = true;
start_of_prekernel_image = PhysicalAddress { boot_info.start_of_prekernel_image };
end_of_prekernel_image = PhysicalAddress { boot_info.end_of_prekernel_image };
physical_to_virtual_offset = boot_info.physical_to_virtual_offset;
kernel_mapping_base = boot_info.kernel_mapping_base;
kernel_load_base = boot_info.kernel_load_base;
#if ARCH(X86_64)
gdt64ptr = boot_info.gdt64ptr;
code64_sel = boot_info.code64_sel;
boot_pml4t = PhysicalAddress { boot_info.boot_pml4t };
#endif
boot_pdpt = PhysicalAddress { boot_info.boot_pdpt };
boot_pd0 = PhysicalAddress { boot_info.boot_pd0 };
boot_pd_kernel = PhysicalAddress { boot_info.boot_pd_kernel };
boot_pd_kernel_pt1023 = (PageTableEntry*)boot_info.boot_pd_kernel_pt1023;
kernel_cmdline = (char const*)boot_info.kernel_cmdline;
multiboot_flags = boot_info.multiboot_flags;
multiboot_memory_map = (multiboot_memory_map_t*)boot_info.multiboot_memory_map;
multiboot_memory_map_count = boot_info.multiboot_memory_map_count;
multiboot_modules = (multiboot_module_entry_t*)boot_info.multiboot_modules;
multiboot_modules_count = boot_info.multiboot_modules_count;
multiboot_framebuffer_addr = PhysicalAddress { boot_info.multiboot_framebuffer_addr };
multiboot_framebuffer_pitch = boot_info.multiboot_framebuffer_pitch;
multiboot_framebuffer_width = boot_info.multiboot_framebuffer_width;
multiboot_framebuffer_height = boot_info.multiboot_framebuffer_height;
multiboot_framebuffer_bpp = boot_info.multiboot_framebuffer_bpp;
multiboot_framebuffer_type = boot_info.multiboot_framebuffer_type;
setup_serial_debug();
// We need to copy the command line before kmalloc is initialized,
// as it may overwrite parts of multiboot!
CommandLine::early_initialize(kernel_cmdline);
memcpy(multiboot_copy_boot_modules_array, multiboot_modules, multiboot_modules_count * sizeof(multiboot_module_entry_t));
multiboot_copy_boot_modules_count = multiboot_modules_count;
new (&bsp_processor()) Processor();
bsp_processor().early_initialize(0);
// Invoke the constructors needed for the kernel heap
for (ctor_func_t* ctor = start_heap_ctors; ctor < end_heap_ctors; ctor++)
(*ctor)();
kmalloc_init();
load_kernel_symbol_table();
bsp_processor().initialize(0);
CommandLine::initialize();
Memory::MemoryManager::initialize(0);
// NOTE: If the bootloader provided a framebuffer, then set up an initial console.
// If the bootloader didn't provide a framebuffer, then set up an initial text console.
// We do so we can see the output on the screen as soon as possible.
if (!kernel_command_line().is_early_boot_console_disabled()) {
if (!multiboot_framebuffer_addr.is_null() && multiboot_framebuffer_type == MULTIBOOT_FRAMEBUFFER_TYPE_RGB) {
g_boot_console = &try_make_lock_ref_counted<Graphics::BootFramebufferConsole>(multiboot_framebuffer_addr, multiboot_framebuffer_width, multiboot_framebuffer_height, multiboot_framebuffer_pitch).value().leak_ref();
} else {
g_boot_console = &Graphics::VGATextModeConsole::initialize().leak_ref();
}
}
dmesgln("Starting SerenityOS...");
DeviceManagement::initialize();
SysFSComponentRegistry::initialize();
DeviceManagement::the().attach_null_device(*NullDevice::must_initialize());
DeviceManagement::the().attach_console_device(*ConsoleDevice::must_create());
DeviceManagement::the().attach_device_control_device(*DeviceControlDevice::must_create());
MM.unmap_prekernel();
// Ensure that the safemem sections are not empty. This could happen if the linker accidentally discards the sections.
VERIFY(+start_of_safemem_text != +end_of_safemem_text);
VERIFY(+start_of_safemem_atomic_text != +end_of_safemem_atomic_text);
// Invoke all static global constructors in the kernel.
// Note that we want to do this as early as possible.
for (ctor_func_t* ctor = start_ctors; ctor < end_ctors; ctor++)
(*ctor)();
InterruptManagement::initialize();
ACPI::initialize();
// Initialize TimeManagement before using randomness!
TimeManagement::initialize(0);
__stack_chk_guard = get_fast_random<size_t>();
ProcFSComponentRegistry::initialize();
Process::initialize();
Scheduler::initialize();
if (APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
// We must set up the AP boot environment before switching to a kernel process,
// as pages below address USER_RANGE_BASE are only accesible through the kernel
// page directory.
APIC::the().setup_ap_boot_environment();
}
{
LockRefPtr<Thread> init_stage2_thread;
(void)Process::create_kernel_process(init_stage2_thread, KString::must_create("init_stage2"sv), init_stage2, nullptr, THREAD_AFFINITY_DEFAULT, Process::RegisterProcess::No);
// We need to make sure we drop the reference for init_stage2_thread
// before calling into Scheduler::start, otherwise we will have a
// dangling Thread that never gets cleaned up
}
Scheduler::start();
VERIFY_NOT_REACHED();
}
//
// This is where C++ execution begins for APs, after boot.S transfers control here.
//
// The purpose of init_ap() is to initialize APs for multi-tasking.
//
extern "C" [[noreturn]] UNMAP_AFTER_INIT void init_ap(FlatPtr cpu, Processor* processor_info)
{
processor_info->early_initialize(cpu);
processor_info->initialize(cpu);
Memory::MemoryManager::initialize(cpu);
Scheduler::set_idle_thread(APIC::the().get_idle_thread(cpu));
Scheduler::start();
VERIFY_NOT_REACHED();
}
//
// This method is called once a CPU enters the scheduler and its idle thread
// At this point the initial boot stack can be freed
//
extern "C" UNMAP_AFTER_INIT void init_finished(u32 cpu)
{
if (cpu == 0) {
// TODO: we can reuse the boot stack, maybe for kmalloc()?
} else {
APIC::the().init_finished(cpu);
TimeManagement::initialize(cpu);
}
}
void init_stage2(void*)
{
// This is a little bit of a hack. We can't register our process at the time we're
// creating it, but we need to be registered otherwise finalization won't be happy.
// The colonel process gets away without having to do this because it never exits.
Process::register_new(Process::current());
WorkQueue::initialize();
if (kernel_command_line().is_smp_enabled() && APIC::initialized() && APIC::the().enabled_processor_count() > 1) {
// We can't start the APs until we have a scheduler up and running.
// We need to be able to process ICI messages, otherwise another
// core may send too many and end up deadlocking once the pool is
// exhausted
APIC::the().boot_aps();
}
// Initialize the PCI Bus as early as possible, for early boot (PCI based) serial logging
PCI::initialize();
if (!PCI::Access::is_disabled()) {
PCISerialDevice::detect();
}
VirtualFileSystem::initialize();
if (!get_serial_debug())
(void)SerialDevice::must_create(0).leak_ref();
(void)SerialDevice::must_create(1).leak_ref();
(void)SerialDevice::must_create(2).leak_ref();
(void)SerialDevice::must_create(3).leak_ref();
VMWareBackdoor::the(); // don't wait until first mouse packet
MUST(HIDManagement::initialize());
GraphicsManagement::the().initialize();
ConsoleManagement::the().initialize();
SyncTask::spawn();
FinalizerTask::spawn();
auto boot_profiling = kernel_command_line().is_boot_profiling_enabled();
if (!PCI::Access::is_disabled()) {
USB::USBManagement::initialize();
}
FirmwareSysFSDirectory::initialize();
if (!PCI::Access::is_disabled()) {
VirtIO::detect();
}
NetworkingManagement::the().initialize();
Syscall::initialize();
#ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
(void)KCOVDevice::must_create().leak_ref();
#endif
(void)MemoryDevice::must_create().leak_ref();
(void)ZeroDevice::must_create().leak_ref();
(void)FullDevice::must_create().leak_ref();
(void)RandomDevice::must_create().leak_ref();
(void)SelfTTYDevice::must_create().leak_ref();
PTYMultiplexer::initialize();
AudioManagement::the().initialize();
StorageManagement::the().initialize(kernel_command_line().root_device(), kernel_command_line().is_force_pio(), kernel_command_line().is_nvme_polling_enabled());
if (VirtualFileSystem::the().mount_root(StorageManagement::the().root_filesystem()).is_error()) {
PANIC("VirtualFileSystem::mount_root failed");
}
// Switch out of early boot mode.
g_in_early_boot = false;
// NOTE: Everything marked READONLY_AFTER_INIT becomes non-writable after this point.
MM.protect_readonly_after_init_memory();
// NOTE: Everything in the .ksyms section becomes read-only after this point.
MM.protect_ksyms_after_init();
// NOTE: Everything marked UNMAP_AFTER_INIT becomes inaccessible after this point.
MM.unmap_text_after_init();
LockRefPtr<Thread> thread;
auto userspace_init = kernel_command_line().userspace_init();
auto init_args = kernel_command_line().userspace_init_args();
auto init_or_error = Process::try_create_user_process(thread, userspace_init, UserID(0), GroupID(0), move(init_args), {}, tty0);
if (init_or_error.is_error())
PANIC("init_stage2: Error spawning init process: {}", init_or_error.error());
g_init_pid = init_or_error.value()->pid();
thread->set_priority(THREAD_PRIORITY_HIGH);
if (boot_profiling) {
dbgln("Starting full system boot profiling");
MutexLocker mutex_locker(Process::current().big_lock());
auto const enable_all = ~(u64)0;
auto result = Process::current().profiling_enable(-1, enable_all);
VERIFY(!result.is_error());
}
NetworkTask::spawn();
Process::current().sys$exit(0);
VERIFY_NOT_REACHED();
}
UNMAP_AFTER_INIT void setup_serial_debug()
{
// serial_debug will output all the dbgln() data to COM1 at
// 8-N-1 57600 baud. this is particularly useful for debugging the boot
// process on live hardware.
if (StringView { kernel_cmdline, strlen(kernel_cmdline) }.contains("serial_debug"sv)) {
set_serial_debug(true);
}
}
// Define some Itanium C++ ABI methods to stop the linker from complaining.
// If we actually call these something has gone horribly wrong
void* __dso_handle __attribute__((visibility("hidden")));
}
|