1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
#include "Devices/PATADiskDevice.h"
#include "KSyms.h"
#include "Process.h"
#include "RTC.h"
#include "Scheduler.h"
#include "kstdio.h"
#include <AK/Types.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/Arch/i386/APIC.h>
#include <Kernel/Arch/i386/PIC.h>
#include <Kernel/Arch/i386/PIT.h>
#include <Kernel/CMOS.h>
#include <Kernel/Devices/BXVGADevice.h>
#include <Kernel/Devices/DebugLogDevice.h>
#include <Kernel/Devices/DiskPartition.h>
#include <Kernel/Devices/FloppyDiskDevice.h>
#include <Kernel/Devices/FullDevice.h>
#include <Kernel/Devices/GPTPartitionTable.h>
#include <Kernel/Devices/KeyboardDevice.h>
#include <Kernel/Devices/MBRPartitionTable.h>
#include <Kernel/Devices/MBVGADevice.h>
#include <Kernel/Devices/NullDevice.h>
#include <Kernel/Devices/PATAChannel.h>
#include <Kernel/Devices/PS2MouseDevice.h>
#include <Kernel/Devices/RandomDevice.h>
#include <Kernel/Devices/SB16.h>
#include <Kernel/Devices/SerialDevice.h>
#include <Kernel/Devices/ZeroDevice.h>
#include <Kernel/FileSystem/DevPtsFS.h>
#include <Kernel/FileSystem/Ext2FileSystem.h>
#include <Kernel/FileSystem/ProcFS.h>
#include <Kernel/FileSystem/TmpFS.h>
#include <Kernel/FileSystem/VirtualFileSystem.h>
#include <Kernel/Heap/SlabAllocator.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/KParams.h>
#include <Kernel/Multiboot.h>
#include <Kernel/Net/E1000NetworkAdapter.h>
#include <Kernel/Net/LoopbackAdapter.h>
#include <Kernel/Net/NetworkTask.h>
#include <Kernel/Net/RTL8139NetworkAdapter.h>
#include <Kernel/PCI.h>
#include <Kernel/TTY/PTYMultiplexer.h>
#include <Kernel/TTY/VirtualConsole.h>
#include <Kernel/VM/MemoryManager.h>
VirtualConsole* tty0;
VirtualConsole* tty1;
KeyboardDevice* keyboard;
PS2MouseDevice* ps2mouse;
SB16* sb16;
DebugLogDevice* dev_debuglog;
NullDevice* dev_null;
SerialDevice* ttyS0;
SerialDevice* ttyS1;
SerialDevice* ttyS2;
SerialDevice* ttyS3;
VFS* vfs;
[[noreturn]] static void init_stage2()
{
Syscall::initialize();
auto dev_zero = make<ZeroDevice>();
auto dev_full = make<FullDevice>();
auto dev_random = make<RandomDevice>();
auto dev_ptmx = make<PTYMultiplexer>();
bool text_debug = KParams::the().has("text_debug");
bool force_pio = KParams::the().has("force_pio");
auto root = KParams::the().get("root");
if (root.is_empty()) {
root = "/dev/hda";
}
if (!root.starts_with("/dev/hda")) {
kprintf("init_stage2: root filesystem must be on the first IDE hard drive (/dev/hda)\n");
hang();
}
auto pata0 = PATAChannel::create(PATAChannel::ChannelType::Primary, force_pio);
NonnullRefPtr<DiskDevice> root_dev = *pata0->master_device();
root = root.substring(strlen("/dev/hda"), root.length() - strlen("/dev/hda"));
if (root.length()) {
bool ok;
unsigned partition_number = root.to_uint(ok);
if (!ok) {
kprintf("init_stage2: couldn't parse partition number from root kernel parameter\n");
hang();
}
if (partition_number < 1 || partition_number > 4) {
kprintf("init_stage2: invalid partition number %d; expected 1 to 4\n", partition_number);
hang();
}
MBRPartitionTable mbr(root_dev);
if (!mbr.initialize()) {
kprintf("init_stage2: couldn't read MBR from disk\n");
hang();
}
if (mbr.is_protective_mbr()) {
dbgprintf("GPT Partitioned Storage Detected!\n");
GPTPartitionTable gpt(root_dev);
if (!gpt.initialize()) {
kprintf("init_stage2: couldn't read GPT from disk\n");
hang();
}
auto partition = gpt.partition(partition_number);
if (!partition) {
kprintf("init_stage2: couldn't get partition %d\n", partition_number);
hang();
}
root_dev = *partition;
} else {
dbgprintf("MBR Partitioned Storage Detected!\n");
auto partition = mbr.partition(partition_number);
if (!partition) {
kprintf("init_stage2: couldn't get partition %d\n", partition_number);
hang();
}
root_dev = *partition;
}
}
auto e2fs = Ext2FS::create(root_dev);
if (!e2fs->initialize()) {
kprintf("init_stage2: couldn't open root filesystem\n");
hang();
}
if (!vfs->mount_root(e2fs)) {
kprintf("VFS::mount_root failed\n");
hang();
}
dbgprintf("Load ksyms\n");
load_ksyms();
dbgprintf("Loaded ksyms\n");
// Now, detect whether or not there are actually any floppy disks attached to the system
u8 detect = CMOS::read(0x10);
RefPtr<FloppyDiskDevice> fd0;
RefPtr<FloppyDiskDevice> fd1;
if ((detect >> 4) & 0x4) {
fd0 = FloppyDiskDevice::create(FloppyDiskDevice::DriveType::Master);
kprintf("fd0 is 1.44MB floppy drive\n");
} else {
kprintf("fd0 type unsupported! Type == 0x%x\n", detect >> 4);
}
if (detect & 0x0f) {
fd1 = FloppyDiskDevice::create(FloppyDiskDevice::DriveType::Slave);
kprintf("fd1 is 1.44MB floppy drive");
} else {
kprintf("fd1 type unsupported! Type == 0x%x\n", detect & 0x0f);
}
int error;
// SystemServer will start WindowServer, which will be doing graphics.
// From this point on we don't want to touch the VGA text terminal or
// accept keyboard input.
if (text_debug) {
tty0->set_graphical(false);
Thread* thread = nullptr;
Process::create_user_process(thread, "/bin/Shell", (uid_t)0, (gid_t)0, (pid_t)0, error, {}, {}, tty0);
if (error != 0) {
kprintf("init_stage2: error spawning Shell: %d\n", error);
hang();
}
thread->set_priority(ThreadPriority::High);
} else {
tty0->set_graphical(true);
Thread* thread = nullptr;
Process::create_user_process(thread, "/bin/SystemServer", (uid_t)0, (gid_t)0, (pid_t)0, error, {}, {}, tty0);
if (error != 0) {
kprintf("init_stage2: error spawning SystemServer: %d\n", error);
hang();
}
thread->set_priority(ThreadPriority::High);
}
{
Thread* thread = nullptr;
Process::create_kernel_process(thread, "NetworkTask", NetworkTask_main);
}
current->process().sys$exit(0);
ASSERT_NOT_REACHED();
}
extern "C" {
multiboot_info_t* multiboot_info_ptr;
}
typedef void (*ctor_func_t)();
// Defined in the linker script
extern ctor_func_t start_ctors;
extern ctor_func_t end_ctors;
// Define some Itanium C++ ABI methods to stop the linker from complaining
// If we actually call these something has gone horribly wrong
void* __dso_handle __attribute__((visibility ("hidden")));
extern "C" int __cxa_atexit ( void (*)(void *), void *, void *)
{
ASSERT_NOT_REACHED();
return 0;
}
extern "C" [[noreturn]] void init(u32 physical_address_for_kernel_page_tables)
{
// this is only used one time, directly below here. we can't use this part
// of libc at this point in the boot process, or we'd just pull strstr in
// from <string.h>.
auto bad_prefix_check = [](const char* str, const char* search) -> bool {
while (*search)
if (*search++ != *str++)
return false;
return true;
};
// serial_debug will output all the kprintf and dbgprintf data to COM1 at
// 8-N-1 57600 baud. this is particularly useful for debugging the boot
// process on live hardware.
//
// note: it must be the first option in the boot cmdline.
if (multiboot_info_ptr->cmdline && bad_prefix_check(reinterpret_cast<const char*>(multiboot_info_ptr->cmdline), "serial_debug"))
set_serial_debug(true);
sse_init();
kmalloc_init();
slab_alloc_init();
// must come after kmalloc_init because we use AK_MAKE_ETERNAL in KParams
new KParams(String(reinterpret_cast<const char*>(multiboot_info_ptr->cmdline)));
bool text_debug = KParams::the().has("text_debug");
vfs = new VFS;
dev_debuglog = new DebugLogDevice;
auto console = make<Console>();
RTC::initialize();
PIC::initialize();
gdt_init();
idt_init();
// call global constructors after gtd and itd init
for (ctor_func_t* ctor = &start_ctors; ctor < &end_ctors; ctor++)
(*ctor)();
keyboard = new KeyboardDevice;
ps2mouse = new PS2MouseDevice;
sb16 = new SB16;
dev_null = new NullDevice;
if (!get_serial_debug())
ttyS0 = new SerialDevice(SERIAL_COM1_ADDR, 64);
ttyS1 = new SerialDevice(SERIAL_COM2_ADDR, 65);
ttyS2 = new SerialDevice(SERIAL_COM3_ADDR, 66);
ttyS3 = new SerialDevice(SERIAL_COM4_ADDR, 67);
VirtualConsole::initialize();
tty0 = new VirtualConsole(0, VirtualConsole::AdoptCurrentVGABuffer);
tty1 = new VirtualConsole(1);
VirtualConsole::switch_to(0);
kprintf("Starting Serenity Operating System...\n");
MemoryManager::initialize(physical_address_for_kernel_page_tables);
if (APIC::init())
APIC::enable(0);
PIT::initialize();
PCI::enumerate_all([](const PCI::Address& address, PCI::ID id) {
kprintf("PCI device: bus=%d slot=%d function=%d id=%w:%w\n",
address.bus(),
address.slot(),
address.function(),
id.vendor_id,
id.device_id);
});
if (text_debug) {
dbgprintf("Text mode enabled\n");
} else {
if (multiboot_info_ptr->framebuffer_type == 1 || multiboot_info_ptr->framebuffer_type == 2) {
new MBVGADevice(
PhysicalAddress((u32)(multiboot_info_ptr->framebuffer_addr)),
multiboot_info_ptr->framebuffer_pitch,
multiboot_info_ptr->framebuffer_width,
multiboot_info_ptr->framebuffer_height);
} else {
new BXVGADevice;
}
}
LoopbackAdapter::the();
auto e1000 = E1000NetworkAdapter::autodetect();
auto rtl8139 = RTL8139NetworkAdapter::autodetect();
Process::initialize();
Thread::initialize();
Thread* init_stage2_thread = nullptr;
Process::create_kernel_process(init_stage2_thread, "init_stage2", init_stage2);
Thread* syncd_thread = nullptr;
Process::create_kernel_process(syncd_thread, "syncd", [] {
for (;;) {
VFS::the().sync();
current->sleep(1 * TICKS_PER_SECOND);
}
});
Process::create_kernel_process(g_finalizer, "Finalizer", [] {
current->set_priority(ThreadPriority::Low);
for (;;) {
current->wait_on(*g_finalizer_wait_queue);
Thread::finalize_dying_threads();
}
});
Scheduler::pick_next();
sti();
Scheduler::idle_loop();
ASSERT_NOT_REACHED();
}
|