summaryrefslogtreecommitdiff
path: root/Kernel/VM/Region.cpp
blob: 5f40c88b8e85bf754af8f36f2afa171364cfaf7b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
/*
 * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <AK/Memory.h>
#include <AK/StringView.h>
#include <Kernel/FileSystem/Inode.h>
#include <Kernel/Process.h>
#include <Kernel/Thread.h>
#include <Kernel/VM/AnonymousVMObject.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/PageDirectory.h>
#include <Kernel/VM/PurgeableVMObject.h>
#include <Kernel/VM/Region.h>
#include <Kernel/VM/SharedInodeVMObject.h>

//#define MM_DEBUG
//#define PAGE_FAULT_DEBUG

namespace Kernel {

Region::Region(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, const String& name, u8 access, bool cacheable, bool kernel)
    : PurgeablePageRanges(vmobject)
    , m_range(range)
    , m_offset_in_vmobject(offset_in_vmobject)
    , m_vmobject(move(vmobject))
    , m_name(name)
    , m_access(access)
    , m_cacheable(cacheable)
    , m_kernel(kernel)
{
    register_purgeable_page_ranges();
    MM.register_region(*this);
}

Region::~Region()
{
    unregister_purgeable_page_ranges();

    // Make sure we disable interrupts so we don't get interrupted between unmapping and unregistering.
    // Unmapping the region will give the VM back to the RangeAllocator, so an interrupt handler would
    // find the address<->region mappings in an invalid state there.
    ScopedSpinLock lock(s_mm_lock);
    if (m_page_directory) {
        unmap(ShouldDeallocateVirtualMemoryRange::Yes);
        ASSERT(!m_page_directory);
    }

    MM.unregister_region(*this);
}

void Region::register_purgeable_page_ranges()
{
    if (m_vmobject->is_purgeable()) {
        auto& vmobject = static_cast<PurgeableVMObject&>(*m_vmobject);
        vmobject.register_purgeable_page_ranges(*this);
    }
}

void Region::unregister_purgeable_page_ranges()
{
    if (m_vmobject->is_purgeable()) {
        auto& vmobject = static_cast<PurgeableVMObject&>(*m_vmobject);
        vmobject.unregister_purgeable_page_ranges(*this);
    }
}

NonnullOwnPtr<Region> Region::clone()
{
    ASSERT(Process::current());

    ScopedSpinLock lock(s_mm_lock);
    if (m_inherit_mode == InheritMode::ZeroedOnFork) {
        ASSERT(m_mmap);
        ASSERT(!m_shared);
        ASSERT(vmobject().is_anonymous());
        auto zeroed_region = Region::create_user_accessible(get_owner().ptr(), m_range, AnonymousVMObject::create_with_size(size()), 0, m_name, m_access);
        zeroed_region->set_purgeable_page_ranges(*this);
        zeroed_region->set_mmap(m_mmap);
        zeroed_region->set_inherit_mode(m_inherit_mode);
        return zeroed_region;
    }

    if (m_shared) {
        ASSERT(!m_stack);
#ifdef MM_DEBUG
        dbg() << "Region::clone(): Sharing " << name() << " (" << vaddr() << ")";
#endif
        if (vmobject().is_inode())
            ASSERT(vmobject().is_shared_inode());

        // Create a new region backed by the same VMObject.
        auto region = Region::create_user_accessible(get_owner().ptr(), m_range, m_vmobject, m_offset_in_vmobject, m_name, m_access);
        region->set_purgeable_page_ranges(*this);
        region->set_mmap(m_mmap);
        region->set_shared(m_shared);
        return region;
    }

    if (vmobject().is_inode())
        ASSERT(vmobject().is_private_inode());

#ifdef MM_DEBUG
    dbg() << "Region::clone(): CoWing " << name() << " (" << vaddr() << ")";
#endif
    // Set up a COW region. The parent (this) region becomes COW as well!
    ensure_cow_map().fill(true);
    remap();
    auto clone_region = Region::create_user_accessible(get_owner().ptr(), m_range, m_vmobject->clone(), m_offset_in_vmobject, m_name, m_access);
    clone_region->set_purgeable_page_ranges(*this);
    clone_region->ensure_cow_map();
    if (m_stack) {
        ASSERT(is_readable());
        ASSERT(is_writable());
        ASSERT(vmobject().is_anonymous());
        clone_region->set_stack(true);
    }
    clone_region->set_mmap(m_mmap);
    return clone_region;
}

void Region::set_vmobject(NonnullRefPtr<VMObject>&& obj)
{
    if (m_vmobject.ptr() == obj.ptr())
        return;
    unregister_purgeable_page_ranges();
    m_vmobject = move(obj);
    register_purgeable_page_ranges();
}

bool Region::is_volatile(VirtualAddress vaddr, size_t size) const
{
    if (!m_vmobject->is_purgeable())
        return false;

    auto offset_in_vmobject = vaddr.get() - (this->vaddr().get() - m_offset_in_vmobject);
    size_t first_page_index = PAGE_ROUND_DOWN(offset_in_vmobject) / PAGE_SIZE;
    size_t last_page_index = PAGE_ROUND_UP(offset_in_vmobject + size) / PAGE_SIZE;
    return is_volatile_range({ first_page_index, last_page_index - first_page_index });
}

auto Region::set_volatile(VirtualAddress vaddr, size_t size, bool is_volatile, bool& was_purged) -> SetVolatileError
{
    was_purged = false;
    if (!m_vmobject->is_purgeable())
        return SetVolatileError::NotPurgeable;

    auto offset_in_vmobject = vaddr.get() - (this->vaddr().get() - m_offset_in_vmobject);
    if (is_volatile) {
        // If marking pages as volatile, be prudent by not marking
        // partial pages volatile to prevent potentially non-volatile
        // data to be discarded. So rund up the first page and round
        // down the last page.
        size_t first_page_index = PAGE_ROUND_UP(offset_in_vmobject) / PAGE_SIZE;
        size_t last_page_index = PAGE_ROUND_DOWN(offset_in_vmobject + size) / PAGE_SIZE;
        if (first_page_index != last_page_index)
            add_volatile_range({ first_page_index, last_page_index - first_page_index });
    } else {
        // If marking pages as non-volatile, round down the first page
        // and round up the last page to make sure the beginning and
        // end of the range doesn't inadvertedly get discarded.
        size_t first_page_index = PAGE_ROUND_DOWN(offset_in_vmobject) / PAGE_SIZE;
        size_t last_page_index = PAGE_ROUND_UP(offset_in_vmobject + size) / PAGE_SIZE;
        if (remove_volatile_range({ first_page_index, last_page_index - first_page_index }, was_purged)) {
            // Attempt to remap the page range. We want to make sure we have
            // enough memory, if not we need to inform the caller of that
            // fact
            if (!remap_page_range(first_page_index, last_page_index - first_page_index, true))
                return SetVolatileError::OutOfMemory;
        }
    }
    return SetVolatileError::Success;
}

bool Region::can_commit() const
{
    return vmobject().is_anonymous() || vmobject().is_purgeable();
}

bool Region::commit()
{
    ScopedSpinLock lock(s_mm_lock);
#ifdef MM_DEBUG
    dbg() << "MM: Commit " << page_count() << " pages in Region " << this << " (VMO=" << &vmobject() << ") at " << vaddr();
#endif
    for (size_t i = 0; i < page_count(); ++i) {
        if (!commit(i)) {
            // Flush what we did commit
            if (i > 0)
                MM.flush_tlb(vaddr(), i + 1);
            return false;
        }
    }
    MM.flush_tlb(vaddr(), page_count());
    return true;
}

bool Region::commit(size_t page_index)
{
    ASSERT(vmobject().is_anonymous() || vmobject().is_purgeable());
    ASSERT(s_mm_lock.own_lock());
    auto& vmobject_physical_page_entry = physical_page_slot(page_index);
    if (!vmobject_physical_page_entry.is_null() && !vmobject_physical_page_entry->is_shared_zero_page())
        return true;
    auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
    if (!physical_page) {
        klog() << "MM: commit was unable to allocate a physical page";
        return false;
    }
    vmobject_physical_page_entry = move(physical_page);
    remap_page(page_index, false); // caller is in charge of flushing tlb
    return true;
}

u32 Region::cow_pages() const
{
    if (!m_cow_map)
        return 0;
    u32 count = 0;
    for (size_t i = 0; i < m_cow_map->size(); ++i)
        count += m_cow_map->get(i);
    return count;
}

size_t Region::amount_dirty() const
{
    if (!vmobject().is_inode())
        return amount_resident();
    return static_cast<const InodeVMObject&>(vmobject()).amount_dirty();
}

size_t Region::amount_resident() const
{
    size_t bytes = 0;
    for (size_t i = 0; i < page_count(); ++i) {
        auto* page = physical_page(i);
        if (page && !page->is_shared_zero_page())
            bytes += PAGE_SIZE;
    }
    return bytes;
}

size_t Region::amount_shared() const
{
    size_t bytes = 0;
    for (size_t i = 0; i < page_count(); ++i) {
        auto* page = physical_page(i);
        if (page && page->ref_count() > 1 && !page->is_shared_zero_page())
            bytes += PAGE_SIZE;
    }
    return bytes;
}

NonnullOwnPtr<Region> Region::create_user_accessible(Process* owner, const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, const StringView& name, u8 access, bool cacheable)
{
    auto region = make<Region>(range, move(vmobject), offset_in_vmobject, name, access, cacheable, false);
    if (owner)
        region->m_owner = owner->make_weak_ptr();
    region->m_user_accessible = true;
    return region;
}

NonnullOwnPtr<Region> Region::create_kernel_only(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, const StringView& name, u8 access, bool cacheable)
{
    auto region = make<Region>(range, move(vmobject), offset_in_vmobject, name, access, cacheable, true);
    region->m_user_accessible = false;
    return region;
}

bool Region::should_cow(size_t page_index) const
{
    auto* page = physical_page(page_index);
    if (page && page->is_shared_zero_page())
        return true;
    if (m_shared)
        return false;
    return m_cow_map && m_cow_map->get(page_index);
}

void Region::set_should_cow(size_t page_index, bool cow)
{
    ASSERT(!m_shared);
    ensure_cow_map().set(page_index, cow);
}

Bitmap& Region::ensure_cow_map() const
{
    if (!m_cow_map)
        m_cow_map = make<Bitmap>(page_count(), true);
    return *m_cow_map;
}

bool Region::map_individual_page_impl(size_t page_index)
{
    ASSERT(m_page_directory->get_lock().own_lock());
    auto page_vaddr = vaddr_from_page_index(page_index);
    auto* pte = MM.ensure_pte(*m_page_directory, page_vaddr);
    if (!pte) {
#ifdef MM_DEBUG
        dbg() << "MM: >> region map (PD=" << m_page_directory->cr3() << " " << name() << " cannot create PTE for " << page_vaddr;
#endif
        return false;
    }
    auto* page = physical_page(page_index);
    if (!page || (!is_readable() && !is_writable())) {
        pte->clear();
    } else {
        pte->set_cache_disabled(!m_cacheable);
        pte->set_physical_page_base(page->paddr().get());
        pte->set_present(true);
        if (should_cow(page_index))
            pte->set_writable(false);
        else
            pte->set_writable(is_writable());
        if (Processor::current().has_feature(CPUFeature::NX))
            pte->set_execute_disabled(!is_executable());
        pte->set_user_allowed(is_user_accessible());
#ifdef MM_DEBUG
        dbg() << "MM: >> region map (PD=" << m_page_directory->cr3() << ", PTE=" << (void*)pte->raw() << "{" << pte << "}) " << name() << " " << page_vaddr << " => " << page->paddr() << " (@" << page << ")";
#endif
    }
    return true;
}

bool Region::remap_page_range(size_t page_index, size_t page_count, bool do_commit)
{
    bool success = true;
    ScopedSpinLock lock(s_mm_lock);
    ASSERT(m_page_directory);
    ScopedSpinLock page_lock(m_page_directory->get_lock());
    size_t index = page_index;
    while (index < page_index + page_count) {
        if (do_commit && !commit(index)) {
            success = false;
            break;
        }
        if (!map_individual_page_impl(index)) {
            success = false;
            break;
        }
        index++;
    }
    if (index > page_index)
        MM.flush_tlb(vaddr_from_page_index(page_index), index - page_index);
    return success;
}

bool Region::remap_page(size_t page_index, bool with_flush)
{
    ScopedSpinLock lock(s_mm_lock);
    ASSERT(m_page_directory);
    ScopedSpinLock page_lock(m_page_directory->get_lock());
    ASSERT(physical_page(page_index));
    bool success = map_individual_page_impl(page_index);
    if (with_flush)
        MM.flush_tlb(vaddr_from_page_index(page_index));
    return success;
}

void Region::unmap(ShouldDeallocateVirtualMemoryRange deallocate_range)
{
    ScopedSpinLock lock(s_mm_lock);
    ASSERT(m_page_directory);
    ScopedSpinLock page_lock(m_page_directory->get_lock());
    size_t count = page_count();
    for (size_t i = 0; i < count; ++i) {
        auto vaddr = vaddr_from_page_index(i);
        MM.release_pte(*m_page_directory, vaddr, i == count - 1);
#ifdef MM_DEBUG
        auto* page = physical_page(i);
        dbg() << "MM: >> Unmapped " << vaddr << " => P" << String::format("%p", page ? page->paddr().get() : 0) << " <<";
#endif
    }
    MM.flush_tlb(vaddr(), page_count());
    if (deallocate_range == ShouldDeallocateVirtualMemoryRange::Yes) {
        if (m_page_directory->range_allocator().contains(range()))
            m_page_directory->range_allocator().deallocate(range());
        else
            m_page_directory->identity_range_allocator().deallocate(range());
    }
    m_page_directory = nullptr;
}

void Region::set_page_directory(PageDirectory& page_directory)
{
    ASSERT(!m_page_directory || m_page_directory == &page_directory);
    ASSERT(s_mm_lock.own_lock());
    m_page_directory = page_directory;
}

bool Region::map(PageDirectory& page_directory)
{
    ScopedSpinLock lock(s_mm_lock);
    ScopedSpinLock page_lock(page_directory.get_lock());
    set_page_directory(page_directory);
#ifdef MM_DEBUG
    dbg() << "MM: Region::map() will map VMO pages " << first_page_index() << " - " << last_page_index() << " (VMO page count: " << vmobject().page_count() << ")";
#endif
    size_t page_index = 0;
    while (page_index < page_count()) {
        if (!map_individual_page_impl(page_index))
            break;
        ++page_index;
    }
    if (page_index > 0) {
        MM.flush_tlb(vaddr(), page_index);
        return page_index == page_count();
    }
    return false;
}

void Region::remap()
{
    ASSERT(m_page_directory);
    map(*m_page_directory);
}

PageFaultResponse Region::handle_fault(const PageFault& fault)
{
    auto page_index_in_region = page_index_from_address(fault.vaddr());
    if (fault.type() == PageFault::Type::PageNotPresent) {
        if (fault.is_read() && !is_readable()) {
            dbg() << "NP(non-readable) fault in Region{" << this << "}[" << page_index_in_region << "]";
            return PageFaultResponse::ShouldCrash;
        }
        if (fault.is_write() && !is_writable()) {
            dbg() << "NP(non-writable) write fault in Region{" << this << "}[" << page_index_in_region << "] at " << fault.vaddr();
            return PageFaultResponse::ShouldCrash;
        }
        if (vmobject().is_inode()) {
#ifdef PAGE_FAULT_DEBUG
            dbg() << "NP(inode) fault in Region{" << this << "}[" << page_index_in_region << "]";
#endif
            return handle_inode_fault(page_index_in_region);
        }
#ifdef MAP_SHARED_ZERO_PAGE_LAZILY
        if (fault.is_read()) {
            physical_page_slot(page_index_in_region) = MM.shared_zero_page();
            remap_page(page_index_in_region);
            return PageFaultResponse::Continue;
        }
        return handle_zero_fault(page_index_in_region);
#else
        dbg() << "BUG! Unexpected NP fault at " << fault.vaddr();
        return PageFaultResponse::ShouldCrash;
#endif
    }
    ASSERT(fault.type() == PageFault::Type::ProtectionViolation);
    if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
#ifdef PAGE_FAULT_DEBUG
        dbg() << "PV(cow) fault in Region{" << this << "}[" << page_index_in_region << "]";
#endif
        if (physical_page(page_index_in_region)->is_shared_zero_page()) {
#ifdef PAGE_FAULT_DEBUG
            dbg() << "NP(zero) fault in Region{" << this << "}[" << page_index_in_region << "]";
#endif
            return handle_zero_fault(page_index_in_region);
        }
        return handle_cow_fault(page_index_in_region);
    }
    dbg() << "PV(error) fault in Region{" << this << "}[" << page_index_in_region << "] at " << fault.vaddr();
    return PageFaultResponse::ShouldCrash;
}

PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
{
    ASSERT_INTERRUPTS_DISABLED();
    ASSERT(vmobject().is_anonymous());

    LOCKER(vmobject().m_paging_lock);

    auto& page_slot = physical_page_slot(page_index_in_region);

    if (!page_slot.is_null() && !page_slot->is_shared_zero_page()) {
#ifdef PAGE_FAULT_DEBUG
        dbg() << "MM: zero_page() but page already present. Fine with me!";
#endif
        if (!remap_page(page_index_in_region))
            return PageFaultResponse::OutOfMemory;
        return PageFaultResponse::Continue;
    }

    auto current_thread = Thread::current();
    if (current_thread != nullptr)
        current_thread->did_zero_fault();

    auto page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
    if (page.is_null()) {
        klog() << "MM: handle_zero_fault was unable to allocate a physical page";
        return PageFaultResponse::OutOfMemory;
    }

#ifdef PAGE_FAULT_DEBUG
    dbg() << "      >> ZERO " << page->paddr();
#endif
    page_slot = move(page);
    if (!remap_page(page_index_in_region)) {
        klog() << "MM: handle_zero_fault was unable to allocate a page table to map " << page_slot;
        return PageFaultResponse::OutOfMemory;
    }
    return PageFaultResponse::Continue;
}

PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
{
    ASSERT_INTERRUPTS_DISABLED();
    auto& page_slot = physical_page_slot(page_index_in_region);
    if (page_slot->ref_count() == 1) {
#ifdef PAGE_FAULT_DEBUG
        dbg() << "    >> It's a COW page but nobody is sharing it anymore. Remap r/w";
#endif
        set_should_cow(page_index_in_region, false);
        if (!remap_page(page_index_in_region))
            return PageFaultResponse::OutOfMemory;
        return PageFaultResponse::Continue;
    }

    auto current_thread = Thread::current();
    if (current_thread)
        current_thread->did_cow_fault();

#ifdef PAGE_FAULT_DEBUG
    dbg() << "    >> It's a COW page and it's time to COW!";
#endif
    auto page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
    if (page.is_null()) {
        klog() << "MM: handle_cow_fault was unable to allocate a physical page";
        return PageFaultResponse::OutOfMemory;
    }

    u8* dest_ptr = MM.quickmap_page(*page);
    const u8* src_ptr = vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
#ifdef PAGE_FAULT_DEBUG
    dbg() << "      >> COW " << page->paddr() << " <- " << page_slot->paddr();
#endif
    {
        SmapDisabler disabler;
        void* fault_at;
        if (!safe_memcpy(dest_ptr, src_ptr, PAGE_SIZE, fault_at)) {
            if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE)
                dbg() << "      >> COW: error copying page " << page_slot->paddr() << "/" << VirtualAddress(src_ptr) << " to " << page->paddr() << "/" << VirtualAddress(dest_ptr) << ": failed to write to page at " << VirtualAddress(fault_at);
            else if ((u8*)fault_at >= src_ptr && (u8*)fault_at <= src_ptr + PAGE_SIZE)
                dbg() << "      >> COW: error copying page " << page_slot->paddr() << "/" << VirtualAddress(src_ptr) << " to " << page->paddr() << "/" << VirtualAddress(dest_ptr) << ": failed to read from page at " << VirtualAddress(fault_at);
            else
                ASSERT_NOT_REACHED();
        }
    }
    page_slot = move(page);
    MM.unquickmap_page();
    set_should_cow(page_index_in_region, false);
    if (!remap_page(page_index_in_region))
        return PageFaultResponse::OutOfMemory;
    return PageFaultResponse::Continue;
}

PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
{
    ASSERT_INTERRUPTS_DISABLED();
    ASSERT(vmobject().is_inode());

    LOCKER(vmobject().m_paging_lock);

    ASSERT_INTERRUPTS_DISABLED();
    auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
    auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[first_page_index() + page_index_in_region];

#ifdef PAGE_FAULT_DEBUG
    dbg() << "Inode fault in " << name() << " page index: " << page_index_in_region;
#endif

    if (!vmobject_physical_page_entry.is_null()) {
#ifdef PAGE_FAULT_DEBUG
        dbg() << ("MM: page_in_from_inode() but page already present. Fine with me!");
#endif
        if (!remap_page(page_index_in_region))
            return PageFaultResponse::OutOfMemory;
        return PageFaultResponse::Continue;
    }

    auto current_thread = Thread::current();
    if (current_thread)
        current_thread->did_inode_fault();

#ifdef MM_DEBUG
    dbg() << "MM: page_in_from_inode ready to read from inode";
#endif

    u8 page_buffer[PAGE_SIZE];
    auto& inode = inode_vmobject.inode();
    auto buffer = UserOrKernelBuffer::for_kernel_buffer(page_buffer);
    auto nread = inode.read_bytes((first_page_index() + page_index_in_region) * PAGE_SIZE, PAGE_SIZE, buffer, nullptr);
    if (nread < 0) {
        klog() << "MM: handle_inode_fault had error (" << nread << ") while reading!";
        return PageFaultResponse::ShouldCrash;
    }
    if (nread < PAGE_SIZE) {
        // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
        memset(page_buffer + nread, 0, PAGE_SIZE - nread);
    }

    vmobject_physical_page_entry = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
    if (vmobject_physical_page_entry.is_null()) {
        klog() << "MM: handle_inode_fault was unable to allocate a physical page";
        return PageFaultResponse::OutOfMemory;
    }

    u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
    {
        void* fault_at;
        if (!safe_memcpy(dest_ptr, page_buffer, PAGE_SIZE, fault_at)) {
            if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE)
                dbg() << "      >> inode fault: error copying data to " << vmobject_physical_page_entry->paddr() << "/" << VirtualAddress(dest_ptr) << ", failed at " << VirtualAddress(fault_at);
            else
                ASSERT_NOT_REACHED();
        }
    }
    MM.unquickmap_page();

    remap_page(page_index_in_region);
    return PageFaultResponse::Continue;
}

RefPtr<Process> Region::get_owner()
{
    return m_owner.strong_ref();
}

}