summaryrefslogtreecommitdiff
path: root/Kernel/VM/Region.cpp
blob: 6278d69e75a92c851734f9845a382962ff171db5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
#include <Kernel/FileSystem/Inode.h>
#include <Kernel/Process.h>
#include <Kernel/Thread.h>
#include <Kernel/VM/AnonymousVMObject.h>
#include <Kernel/VM/InodeVMObject.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/Region.h>

//#define MM_DEBUG
//#define PAGE_FAULT_DEBUG

Region::Region(const Range& range, const String& name, u8 access)
    : m_range(range)
    , m_vmobject(AnonymousVMObject::create_with_size(size()))
    , m_name(name)
    , m_access(access)
{
    MM.register_region(*this);
}

Region::Region(const Range& range, NonnullRefPtr<Inode> inode, const String& name, u8 access)
    : m_range(range)
    , m_vmobject(InodeVMObject::create_with_inode(*inode))
    , m_name(name)
    , m_access(access)
{
    MM.register_region(*this);
}

Region::Region(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, const String& name, u8 access)
    : m_range(range)
    , m_offset_in_vmobject(offset_in_vmobject)
    , m_vmobject(move(vmobject))
    , m_name(name)
    , m_access(access)
{
    MM.register_region(*this);
}

Region::~Region()
{
    // Make sure we disable interrupts so we don't get interrupted between unmapping and unregistering.
    // Unmapping the region will give the VM back to the RangeAllocator, so an interrupt handler would
    // find the address<->region mappings in an invalid state there.
    InterruptDisabler disabler;
    if (m_page_directory) {
        unmap(ShouldDeallocateVirtualMemoryRange::Yes);
        ASSERT(!m_page_directory);
    }
    MM.unregister_region(*this);
}

NonnullOwnPtr<Region> Region::clone()
{
    ASSERT(current);

    // FIXME: What should we do for privately mapped InodeVMObjects?
    if (m_shared || vmobject().is_inode()) {
        ASSERT(!m_stack);
#ifdef MM_DEBUG
        dbgprintf("%s<%u> Region::clone(): sharing %s (V%p)\n",
            current->process().name().characters(),
            current->pid(),
            m_name.characters(),
            vaddr().get());
#endif
        // Create a new region backed by the same VMObject.
        return Region::create_user_accessible(m_range, m_vmobject, m_offset_in_vmobject, m_name, m_access);
    }

#ifdef MM_DEBUG
    dbgprintf("%s<%u> Region::clone(): cowing %s (V%p)\n",
        current->process().name().characters(),
        current->pid(),
        m_name.characters(),
        vaddr().get());
#endif
    // Set up a COW region. The parent (this) region becomes COW as well!
    ensure_cow_map().fill(true);
    remap();
    auto clone_region = Region::create_user_accessible(m_range, m_vmobject->clone(), m_offset_in_vmobject, m_name, m_access);
    clone_region->ensure_cow_map();
    if (m_stack) {
        ASSERT(is_readable());
        ASSERT(is_writable());
        ASSERT(!is_shared());
        ASSERT(vmobject().is_anonymous());
        clone_region->set_stack(true);
    }
    return clone_region;
}

bool Region::commit()
{
    InterruptDisabler disabler;
#ifdef MM_DEBUG
    dbgprintf("MM: commit %u pages in Region %p (VMO=%p) at V%p\n", vmobject().page_count(), this, &vmobject(), vaddr().get());
#endif
    for (size_t i = 0; i < page_count(); ++i) {
        if (!commit(i))
            return false;
    }
    return true;
}

bool Region::commit(size_t page_index)
{
    ASSERT(vmobject().is_anonymous() || vmobject().is_purgeable());
    InterruptDisabler disabler;
#ifdef MM_DEBUG
    dbgprintf("MM: commit single page (%zu) in Region %p (VMO=%p) at V%p\n", page_index, vmobject().page_count(), this, &vmobject(), vaddr().get());
#endif
    auto& vmobject_physical_page_entry = vmobject().physical_pages()[first_page_index() + page_index];
    if (!vmobject_physical_page_entry.is_null())
        return true;
    auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
    if (!physical_page) {
        kprintf("MM: commit was unable to allocate a physical page\n");
        return false;
    }
    vmobject_physical_page_entry = move(physical_page);
    remap_page(page_index);
    return true;
}

u32 Region::cow_pages() const
{
    if (!m_cow_map)
        return 0;
    u32 count = 0;
    for (int i = 0; i < m_cow_map->size(); ++i)
        count += m_cow_map->get(i);
    return count;
}

size_t Region::amount_dirty() const
{
    if (!vmobject().is_inode())
        return amount_resident();
    return static_cast<const InodeVMObject&>(vmobject()).amount_dirty();
}

size_t Region::amount_resident() const
{
    size_t bytes = 0;
    for (size_t i = 0; i < page_count(); ++i) {
        if (m_vmobject->physical_pages()[first_page_index() + i])
            bytes += PAGE_SIZE;
    }
    return bytes;
}

size_t Region::amount_shared() const
{
    size_t bytes = 0;
    for (size_t i = 0; i < page_count(); ++i) {
        auto& physical_page = m_vmobject->physical_pages()[first_page_index() + i];
        if (physical_page && physical_page->ref_count() > 1)
            bytes += PAGE_SIZE;
    }
    return bytes;
}

NonnullOwnPtr<Region> Region::create_user_accessible(const Range& range, const StringView& name, u8 access)
{
    auto region = make<Region>(range, name, access);
    region->m_user_accessible = true;
    return region;
}

NonnullOwnPtr<Region> Region::create_user_accessible(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, const StringView& name, u8 access)
{
    auto region = make<Region>(range, move(vmobject), offset_in_vmobject, name, access);
    region->m_user_accessible = true;
    return region;
}

NonnullOwnPtr<Region> Region::create_user_accessible(const Range& range, NonnullRefPtr<Inode> inode, const StringView& name, u8 access)
{
    auto region = make<Region>(range, move(inode), name, access);
    region->m_user_accessible = true;
    return region;
}

NonnullOwnPtr<Region> Region::create_kernel_only(const Range& range, const StringView& name, u8 access)
{
    auto region = make<Region>(range, name, access);
    region->m_user_accessible = false;
    return region;
}

bool Region::should_cow(size_t page_index) const
{
    if (m_shared)
        return false;
    return m_cow_map && m_cow_map->get(page_index);
}

void Region::set_should_cow(size_t page_index, bool cow)
{
    ASSERT(!m_shared);
    ensure_cow_map().set(page_index, cow);
}

Bitmap& Region::ensure_cow_map() const
{
    if (!m_cow_map)
        m_cow_map = make<Bitmap>(page_count(), true);
    return *m_cow_map;
}

void Region::remap_page(size_t index)
{
    ASSERT(m_page_directory);
    InterruptDisabler disabler;
    auto page_vaddr = vaddr().offset(index * PAGE_SIZE);
    auto& pte = MM.ensure_pte(*m_page_directory, page_vaddr);
    auto& physical_page = vmobject().physical_pages()[first_page_index() + index];
    ASSERT(physical_page);
    pte.set_physical_page_base(physical_page->paddr().get());
    pte.set_present(is_readable());
    if (should_cow(index))
        pte.set_writable(false);
    else
        pte.set_writable(is_writable());
    if (MM.has_nx_support())
        pte.set_execute_disabled(!is_executable());
    pte.set_user_allowed(is_user_accessible());
    m_page_directory->flush(page_vaddr);
#ifdef MM_DEBUG
    dbg() << "MM: >> region.remap_page (PD=" << m_page_directory->cr3() << ", PTE=" << (void*)pte.raw() << "{" << &pte << "}) " << name() << " " << page_vaddr << " => " << physical_page->paddr() << " (@" << physical_page.ptr() << ")";
#endif
}

void Region::unmap(ShouldDeallocateVirtualMemoryRange deallocate_range)
{
    InterruptDisabler disabler;
    ASSERT(m_page_directory);
    for (size_t i = 0; i < page_count(); ++i) {
        auto vaddr = this->vaddr().offset(i * PAGE_SIZE);
        auto& pte = MM.ensure_pte(*m_page_directory, vaddr);
        pte.set_physical_page_base(0);
        pte.set_present(false);
        pte.set_writable(false);
        pte.set_user_allowed(false);
        m_page_directory->flush(vaddr);
#ifdef MM_DEBUG
        auto& physical_page = vmobject().physical_pages()[first_page_index() + i];
        dbgprintf("MM: >> Unmapped V%p => P%p <<\n", vaddr.get(), physical_page ? physical_page->paddr().get() : 0);
#endif
    }
    if (deallocate_range == ShouldDeallocateVirtualMemoryRange::Yes)
        m_page_directory->range_allocator().deallocate(range());
    m_page_directory = nullptr;
}

void Region::map(PageDirectory& page_directory)
{
    ASSERT(!m_page_directory || m_page_directory == &page_directory);
    InterruptDisabler disabler;
    m_page_directory = page_directory;
#ifdef MM_DEBUG
    dbgprintf("MM: map_region_at_address will map VMO pages %u - %u (VMO page count: %u)\n", first_page_index(), last_page_index(), vmobject().page_count());
#endif
    for (size_t i = 0; i < page_count(); ++i) {
        auto page_vaddr = vaddr().offset(i * PAGE_SIZE);
        auto& pte = MM.ensure_pte(page_directory, page_vaddr);
        auto& physical_page = vmobject().physical_pages()[first_page_index() + i];
        if (physical_page) {
            pte.set_physical_page_base(physical_page->paddr().get());
            pte.set_present(is_readable());
            if (should_cow(i))
                pte.set_writable(false);
            else
                pte.set_writable(is_writable());
            if (MM.has_nx_support())
                pte.set_execute_disabled(!is_executable());
        } else {
            pte.set_physical_page_base(0);
            pte.set_present(false);
            pte.set_writable(is_writable());
        }
        pte.set_user_allowed(is_user_accessible());
        page_directory.flush(page_vaddr);
#ifdef MM_DEBUG
        dbgprintf("MM: >> map_region_at_address (PD=%p) '%s' V%p => P%p (@%p)\n", &page_directory, name().characters(), page_vaddr.get(), physical_page ? physical_page->paddr().get() : 0, physical_page.ptr());
#endif
    }
}

void Region::remap()
{
    ASSERT(m_page_directory);
    map(*m_page_directory);
}

PageFaultResponse Region::handle_fault(const PageFault& fault)
{
    auto page_index_in_region = page_index_from_address(fault.vaddr());
    if (fault.type() == PageFault::Type::PageNotPresent) {
        if (!is_readable()) {
            dbgprintf("NP(non-readable) fault in Region{%p}[%u]\n", this, page_index_in_region);
            return PageFaultResponse::ShouldCrash;
        }

        if (vmobject().is_inode()) {
#ifdef PAGE_FAULT_DEBUG
            dbgprintf("NP(inode) fault in Region{%p}[%u]\n", this, page_index_in_region);
#endif
            return handle_inode_fault(page_index_in_region);
        }
#ifdef PAGE_FAULT_DEBUG
        dbgprintf("NP(zero) fault in Region{%p}[%u]\n", this, page_index_in_region);
#endif
        return handle_zero_fault(page_index_in_region);
    }
    ASSERT(fault.type() == PageFault::Type::ProtectionViolation);
    if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
#ifdef PAGE_FAULT_DEBUG
        dbgprintf("PV(cow) fault in Region{%p}[%u]\n", this, page_index_in_region);
#endif
        return handle_cow_fault(page_index_in_region);
    }
    kprintf("PV(error) fault in Region{%p}[%u] at V%p\n", this, page_index_in_region, fault.vaddr().get());
    return PageFaultResponse::ShouldCrash;
}

PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
{
    ASSERT_INTERRUPTS_DISABLED();
    ASSERT(vmobject().is_anonymous());

    sti();
    LOCKER(vmobject().m_paging_lock);
    cli();

    auto& vmobject_physical_page_entry = vmobject().physical_pages()[first_page_index() + page_index_in_region];

    if (!vmobject_physical_page_entry.is_null()) {
#ifdef PAGE_FAULT_DEBUG
        dbgprintf("MM: zero_page() but page already present. Fine with me!\n");
#endif
        remap_page(page_index_in_region);
        return PageFaultResponse::Continue;
    }

    if (current)
        current->did_zero_fault();

    auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
    if (physical_page.is_null()) {
        kprintf("MM: handle_zero_fault was unable to allocate a physical page\n");
        return PageFaultResponse::ShouldCrash;
    }

#ifdef PAGE_FAULT_DEBUG
    dbgprintf("      >> ZERO P%p\n", physical_page->paddr().get());
#endif
    vmobject_physical_page_entry = move(physical_page);
    remap_page(page_index_in_region);
    return PageFaultResponse::Continue;
}

PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
{
    ASSERT_INTERRUPTS_DISABLED();
    auto& vmobject_physical_page_entry = vmobject().physical_pages()[first_page_index() + page_index_in_region];
    if (vmobject_physical_page_entry->ref_count() == 1) {
#ifdef PAGE_FAULT_DEBUG
        dbgprintf("    >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
#endif
        set_should_cow(page_index_in_region, false);
        remap_page(page_index_in_region);
        return PageFaultResponse::Continue;
    }

    if (current)
        current->did_cow_fault();

#ifdef PAGE_FAULT_DEBUG
    dbgprintf("    >> It's a COW page and it's time to COW!\n");
#endif
    auto physical_page_to_copy = move(vmobject_physical_page_entry);
    auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
    if (physical_page.is_null()) {
        kprintf("MM: handle_cow_fault was unable to allocate a physical page\n");
        return PageFaultResponse::ShouldCrash;
    }
    u8* dest_ptr = MM.quickmap_page(*physical_page);
    const u8* src_ptr = vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
#ifdef PAGE_FAULT_DEBUG
    dbgprintf("      >> COW P%p <- P%p\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
#endif
    memcpy(dest_ptr, src_ptr, PAGE_SIZE);
    vmobject_physical_page_entry = move(physical_page);
    MM.unquickmap_page();
    set_should_cow(page_index_in_region, false);
    remap_page(page_index_in_region);
    return PageFaultResponse::Continue;
}

PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
{
    ASSERT_INTERRUPTS_DISABLED();
    ASSERT(vmobject().is_inode());
    auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
    auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[first_page_index() + page_index_in_region];

    sti();
    LOCKER(vmobject().m_paging_lock);
    cli();

#ifdef PAGE_FAULT_DEBUG
    dbg() << *current << " inode fault in " << name() << " page index: " << page_index_in_region;
#endif

    if (!vmobject_physical_page_entry.is_null()) {
#ifdef PAGE_FAULT_DEBUG
        dbgprintf("MM: page_in_from_inode() but page already present. Fine with me!\n");
#endif
        remap_page(page_index_in_region);
        return PageFaultResponse::Continue;
    }

    if (current)
        current->did_inode_fault();

#ifdef MM_DEBUG
    dbgprintf("MM: page_in_from_inode ready to read from inode\n");
#endif
    sti();
    u8 page_buffer[PAGE_SIZE];
    auto& inode = inode_vmobject.inode();
    auto nread = inode.read_bytes((first_page_index() + page_index_in_region) * PAGE_SIZE, PAGE_SIZE, page_buffer, nullptr);
    if (nread < 0) {
        kprintf("MM: handle_inode_fault had error (%d) while reading!\n", nread);
        return PageFaultResponse::ShouldCrash;
    }
    if (nread < PAGE_SIZE) {
        // If we read less than a page, zero out the rest to avoid leaking uninitialized data.
        memset(page_buffer + nread, 0, PAGE_SIZE - nread);
    }
    cli();
    vmobject_physical_page_entry = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
    if (vmobject_physical_page_entry.is_null()) {
        kprintf("MM: handle_inode_fault was unable to allocate a physical page\n");
        return PageFaultResponse::ShouldCrash;
    }

    u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
    memcpy(dest_ptr, page_buffer, PAGE_SIZE);
    MM.unquickmap_page();

    remap_page(page_index_in_region);
    return PageFaultResponse::Continue;
}