1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/BinarySearch.h>
#include <AK/ScopeGuard.h>
#include <Kernel/Debug.h>
#include <Kernel/Process.h>
#include <Kernel/VM/AnonymousVMObject.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/PhysicalPage.h>
#include <Kernel/VM/PurgeablePageRanges.h>
namespace AK {
template<>
struct Formatter<Kernel::VolatilePageRange> : Formatter<String> {
void format(FormatBuilder& builder, const Kernel::VolatilePageRange& value)
{
return Formatter<String>::format(builder, String::formatted("{{{} ({}) purged: {}}}", value.base, value.count, value.was_purged));
}
};
}
namespace Kernel {
static void dump_volatile_page_ranges(const Vector<VolatilePageRange>& ranges)
{
if constexpr (VOLATILE_PAGE_RANGES_DEBUG) {
for (size_t i = 0; i < ranges.size(); i++) {
dbgln("[{}] {}", i, ranges[i]);
}
}
}
void VolatilePageRanges::add_unchecked(const VolatilePageRange& range)
{
auto add_range = m_total_range.intersected(range);
if (add_range.is_empty())
return;
m_ranges.append(range);
}
bool VolatilePageRanges::add(const VolatilePageRange& range)
{
auto add_range = m_total_range.intersected(range);
if (add_range.is_empty())
return false;
add_range.was_purged = range.was_purged;
if constexpr (VOLATILE_PAGE_RANGES_DEBUG) {
dbgln("ADD {} (total range: {}) -->", range, m_total_range);
dump_volatile_page_ranges(m_ranges);
ScopeGuard debug_guard([&]() {
dbgln("After adding {} (total range: {})", range, m_total_range);
dump_volatile_page_ranges(m_ranges);
dbgln("<-- ADD {} (total range: {})", range, m_total_range);
});
}
size_t nearby_index = 0;
auto* existing_range = binary_search(
m_ranges.span(), add_range, &nearby_index, [](auto& a, auto& b) {
if (a.intersects_or_adjacent(b))
return 0;
return (signed)(a.base - (b.base + b.count - 1));
});
size_t inserted_index = 0;
if (existing_range) {
if (*existing_range == add_range)
return false;
if (existing_range->was_purged != add_range.was_purged) {
// Found an intersecting or adjacent range, but the purge flag
// doesn't match. Subtract what we're adding from it, and
existing_range->subtract_intersecting(add_range);
if (existing_range->is_empty()) {
*existing_range = add_range;
} else {
m_ranges.insert(++nearby_index, add_range);
existing_range = &m_ranges[nearby_index];
}
} else {
// Found an intersecting or adjacent range that can be merged
existing_range->combine_intersecting_or_adjacent(add_range);
}
inserted_index = nearby_index;
} else {
// Insert into the sorted list
m_ranges.insert_before_matching(
VolatilePageRange(add_range), [&](auto& entry) {
return entry.base >= add_range.base + add_range.count;
},
nearby_index, &inserted_index);
existing_range = &m_ranges[inserted_index];
}
// See if we can merge any of the following ranges
inserted_index++;
while (inserted_index < m_ranges.size()) {
auto& next_range = m_ranges[inserted_index];
if (!next_range.intersects_or_adjacent(*existing_range))
break;
if (next_range.was_purged != existing_range->was_purged) {
// The purged flag of following range is not the same.
// Subtract the added/combined range from it
next_range.subtract_intersecting(*existing_range);
if (next_range.is_empty())
m_ranges.remove(inserted_index);
} else {
existing_range->combine_intersecting_or_adjacent(next_range);
m_ranges.remove(inserted_index);
}
}
return true;
}
bool VolatilePageRanges::remove(const VolatilePageRange& range, bool& was_purged)
{
auto remove_range = m_total_range.intersected(range);
if (remove_range.is_empty())
return false;
if constexpr (VOLATILE_PAGE_RANGES_DEBUG) {
dbgln("REMOVE {} (total range: {}) -->", range, m_total_range);
dump_volatile_page_ranges(m_ranges);
ScopeGuard debug_guard([&]() {
dbgln("After removing {} (total range: {})", range, m_total_range);
dump_volatile_page_ranges(m_ranges);
dbgln("<-- REMOVE {} (total range: {}) was_purged: {}", range, m_total_range, was_purged);
});
}
size_t nearby_index = 0;
auto* existing_range = binary_search(
m_ranges.span(), remove_range, &nearby_index, [](auto& a, auto& b) {
if (a.intersects(b))
return 0;
return (signed)(a.base - (b.base + b.count - 1));
});
if (!existing_range)
return false;
was_purged = existing_range->was_purged;
if (existing_range->range_equals(remove_range)) {
m_ranges.remove(nearby_index);
} else {
// See if we need to remove any of the following ranges
VERIFY(existing_range == &m_ranges[nearby_index]); // sanity check
while (nearby_index < m_ranges.size()) {
existing_range = &m_ranges[nearby_index];
if (!existing_range->intersects(range))
break;
was_purged |= existing_range->was_purged;
existing_range->subtract_intersecting(remove_range);
if (existing_range->is_empty()) {
m_ranges.remove(nearby_index);
break;
}
}
}
return true;
}
bool VolatilePageRanges::intersects(const VolatilePageRange& range) const
{
auto* existing_range = binary_search(
m_ranges.span(), range, nullptr, [](auto& a, auto& b) {
if (a.intersects(b))
return 0;
return (signed)(a.base - (b.base + b.count - 1));
});
return existing_range != nullptr;
}
PurgeablePageRanges::PurgeablePageRanges(const VMObject& vmobject)
: m_volatile_ranges({ 0, vmobject.is_anonymous() ? vmobject.page_count() : 0 })
{
}
bool PurgeablePageRanges::add_volatile_range(const VolatilePageRange& range)
{
if (range.is_empty())
return false;
// Since we may need to call into AnonymousVMObject we need to acquire
// its lock as well, and acquire it first. This is important so that
// we don't deadlock when a page fault (e.g. on another processor)
// happens that is meant to lazy-allocate a committed page. It would
// call into AnonymousVMObject::range_made_volatile, which then would
// also call into this object and need to acquire m_lock. By acquiring
// the vmobject lock first in both cases, we avoid deadlocking.
// We can access m_vmobject without any locks for that purpose because
// add_volatile_range and remove_volatile_range can only be called
// by same object that calls set_vmobject.
ScopedSpinLock vmobject_lock(m_vmobject->m_lock);
ScopedSpinLock lock(m_volatile_ranges_lock);
bool added = m_volatile_ranges.add(range);
if (added)
m_vmobject->range_made_volatile(range);
return added;
}
auto PurgeablePageRanges::remove_volatile_range(const VolatilePageRange& range, bool& was_purged) -> RemoveVolatileError
{
if (range.is_empty()) {
was_purged = false;
return RemoveVolatileError::Success;
}
ScopedSpinLock vmobject_lock(m_vmobject->m_lock); // see comment in add_volatile_range
ScopedSpinLock lock(m_volatile_ranges_lock);
VERIFY(m_vmobject);
// Before we actually remove this range, we need to check if we need
// to commit any pages, which may fail. If it fails, we don't actually
// want to make any modifications. COW pages are already accounted for
// in m_shared_committed_cow_pages
size_t need_commit_pages = 0;
m_volatile_ranges.for_each_intersecting_range(range, [&](const VolatilePageRange& intersected_range) {
need_commit_pages += m_vmobject->count_needed_commit_pages_for_nonvolatile_range(intersected_range);
return IterationDecision::Continue;
});
if (need_commit_pages > 0) {
// See if we can grab enough pages for what we're marking non-volatile
if (!MM.commit_user_physical_pages(need_commit_pages))
return RemoveVolatileError::OutOfMemory;
// Now that we are committed to these pages, mark them for lazy-commit allocation
auto pages_to_mark = need_commit_pages;
m_volatile_ranges.for_each_intersecting_range(range, [&](const VolatilePageRange& intersected_range) {
auto pages_marked = m_vmobject->mark_committed_pages_for_nonvolatile_range(intersected_range, pages_to_mark);
pages_to_mark -= pages_marked;
return IterationDecision::Continue;
});
}
// Now actually remove the range
if (m_volatile_ranges.remove(range, was_purged)) {
m_vmobject->range_made_nonvolatile(range);
return RemoveVolatileError::Success;
}
VERIFY(need_commit_pages == 0); // We should have not touched anything
return RemoveVolatileError::SuccessNoChange;
}
bool PurgeablePageRanges::is_volatile_range(const VolatilePageRange& range) const
{
if (range.is_empty())
return false;
ScopedSpinLock lock(m_volatile_ranges_lock);
return m_volatile_ranges.intersects(range);
}
bool PurgeablePageRanges::is_volatile(size_t index) const
{
ScopedSpinLock lock(m_volatile_ranges_lock);
return m_volatile_ranges.contains(index);
}
void PurgeablePageRanges::set_was_purged(const VolatilePageRange& range)
{
ScopedSpinLock lock(m_volatile_ranges_lock);
m_volatile_ranges.add({ range.base, range.count, true });
}
void PurgeablePageRanges::set_vmobject(AnonymousVMObject* vmobject)
{
// No lock needed here
if (vmobject) {
VERIFY(!m_vmobject);
m_vmobject = vmobject;
} else {
VERIFY(m_vmobject);
m_vmobject = nullptr;
}
}
CommittedCowPages::CommittedCowPages(size_t committed_pages)
: m_committed_pages(committed_pages)
{
}
CommittedCowPages::~CommittedCowPages()
{
// Return unused committed pages
if (m_committed_pages > 0)
MM.uncommit_user_physical_pages(m_committed_pages);
}
NonnullRefPtr<PhysicalPage> CommittedCowPages::allocate_one()
{
VERIFY(m_committed_pages > 0);
m_committed_pages--;
return MM.allocate_committed_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
}
bool CommittedCowPages::return_one()
{
VERIFY(m_committed_pages > 0);
m_committed_pages--;
MM.uncommit_user_physical_pages(1);
return m_committed_pages == 0;
}
}
|