summaryrefslogtreecommitdiff
path: root/Kernel/UBSanitizer.cpp
blob: 3edccc960e31e6c6b1bbd41f25db1175398562d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/*
 * Copyright (c) 2021, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Format.h>
#include <AK/UBSanitizer.h>
#include <Kernel/Arch/Processor.h>
#include <Kernel/KSyms.h>

using namespace Kernel;
using namespace AK::UBSanitizer;

Atomic<bool> AK::UBSanitizer::g_ubsan_is_deadly { true };

extern "C" {

static void print_location(const SourceLocation& location)
{
    if (!location.filename())
        critical_dmesgln("KUBSAN: in unknown file");
    else
        critical_dmesgln("KUBSAN: at {}, line {}, column: {}", location.filename(), location.line(), location.column());
    dump_backtrace(g_ubsan_is_deadly ? PrintToScreen::Yes : PrintToScreen::No);
    if (g_ubsan_is_deadly) {
        critical_dmesgln("UB is configured to be deadly, halting the system.");
        Processor::halt();
    }
}

void __ubsan_handle_load_invalid_value(const InvalidValueData&, ValueHandle) __attribute__((used));
void __ubsan_handle_load_invalid_value(const InvalidValueData& data, ValueHandle)
{
    critical_dmesgln("KUBSAN: load-invalid-value: {} ({}-bit)", data.type.name(), data.type.bit_width());
    print_location(data.location);
}

void __ubsan_handle_nonnull_arg(const NonnullArgData&) __attribute__((used));
void __ubsan_handle_nonnull_arg(const NonnullArgData& data)
{
    critical_dmesgln("KUBSAN: null pointer passed as argument {}, which is declared to never be null", data.argument_index);
    print_location(data.location);
}

void __ubsan_handle_nullability_arg(const NonnullArgData&) __attribute__((used));
void __ubsan_handle_nullability_arg(const NonnullArgData& data)
{
    critical_dmesgln("KUBSAN: null pointer passed as argument {}, which is declared to never be null", data.argument_index);
    print_location(data.location);
}

void __ubsan_handle_nonnull_return_v1(const NonnullReturnData&, const SourceLocation&) __attribute__((used));
void __ubsan_handle_nonnull_return_v1(const NonnullReturnData&, const SourceLocation& location)
{
    critical_dmesgln("KUBSAN: null pointer return from function declared to never return null");
    print_location(location);
}

void __ubsan_handle_nullability_return_v1(const NonnullReturnData& data, const SourceLocation& location) __attribute__((used));
void __ubsan_handle_nullability_return_v1(const NonnullReturnData&, const SourceLocation& location)
{
    critical_dmesgln("KUBSAN: null pointer return from function declared to never return null");
    print_location(location);
}

void __ubsan_handle_vla_bound_not_positive(const VLABoundData&, ValueHandle) __attribute__((used));
void __ubsan_handle_vla_bound_not_positive(const VLABoundData& data, ValueHandle)
{
    critical_dmesgln("KUBSAN: VLA bound not positive {} ({}-bit)", data.type.name(), data.type.bit_width());
    print_location(data.location);
}

void __ubsan_handle_add_overflow(const OverflowData&, ValueHandle lhs, ValueHandle rhs) __attribute__((used));
void __ubsan_handle_add_overflow(const OverflowData& data, ValueHandle, ValueHandle)
{
    critical_dmesgln("KUBSAN: addition overflow, {} ({}-bit)", data.type.name(), data.type.bit_width());

    print_location(data.location);
}

void __ubsan_handle_sub_overflow(const OverflowData&, ValueHandle lhs, ValueHandle rhs) __attribute__((used));
void __ubsan_handle_sub_overflow(const OverflowData& data, ValueHandle, ValueHandle)
{
    critical_dmesgln("KUBSAN: subtraction overflow, {} ({}-bit)", data.type.name(), data.type.bit_width());

    print_location(data.location);
}

void __ubsan_handle_negate_overflow(const OverflowData&, ValueHandle) __attribute__((used));
void __ubsan_handle_negate_overflow(const OverflowData& data, ValueHandle)
{
    critical_dmesgln("KUBSAN: negation overflow, {} ({}-bit)", data.type.name(), data.type.bit_width());

    print_location(data.location);
}

void __ubsan_handle_mul_overflow(const OverflowData&, ValueHandle lhs, ValueHandle rhs) __attribute__((used));
void __ubsan_handle_mul_overflow(const OverflowData& data, ValueHandle, ValueHandle)
{
    critical_dmesgln("KUBSAN: multiplication overflow, {} ({}-bit)", data.type.name(), data.type.bit_width());
    print_location(data.location);
}

void __ubsan_handle_shift_out_of_bounds(const ShiftOutOfBoundsData&, ValueHandle lhs, ValueHandle rhs) __attribute__((used));
void __ubsan_handle_shift_out_of_bounds(const ShiftOutOfBoundsData& data, ValueHandle, ValueHandle)
{
    critical_dmesgln("KUBSAN: shift out of bounds, {} ({}-bit) shifted by {} ({}-bit)", data.lhs_type.name(), data.lhs_type.bit_width(), data.rhs_type.name(), data.rhs_type.bit_width());
    print_location(data.location);
}

void __ubsan_handle_divrem_overflow(const OverflowData&, ValueHandle lhs, ValueHandle rhs) __attribute__((used));
void __ubsan_handle_divrem_overflow(const OverflowData& data, ValueHandle, ValueHandle)
{
    critical_dmesgln("KUBSAN: divrem overflow, {} ({}-bit)", data.type.name(), data.type.bit_width());
    print_location(data.location);
}

void __ubsan_handle_out_of_bounds(const OutOfBoundsData&, ValueHandle) __attribute__((used));
void __ubsan_handle_out_of_bounds(const OutOfBoundsData& data, ValueHandle)
{
    critical_dmesgln("KUBSAN: out of bounds access into array of {} ({}-bit), index type {} ({}-bit)", data.array_type.name(), data.array_type.bit_width(), data.index_type.name(), data.index_type.bit_width());
    print_location(data.location);
}

void __ubsan_handle_type_mismatch_v1(const TypeMismatchData&, ValueHandle) __attribute__((used));
void __ubsan_handle_type_mismatch_v1(const TypeMismatchData& data, ValueHandle ptr)
{
    constexpr StringView kinds[] = {
        "load of",
        "store to",
        "reference binding to",
        "member access within",
        "member call on",
        "constructor call on",
        "downcast of",
        "downcast of",
        "upcast of",
        "cast to virtual base of",
        "_Nonnull binding to",
        "dynamic operation on"
    };

    FlatPtr alignment = (FlatPtr)1 << data.log_alignment;
    auto kind = kinds[data.type_check_kind];

    if (!ptr)
        critical_dmesgln("KUBSAN: {} null pointer of type {}", kind, data.type.name());
    else if ((FlatPtr)ptr & (alignment - 1))
        critical_dmesgln("KUBSAN: {} misaligned address {:p} of type {}", kind, ptr, data.type.name());
    else
        critical_dmesgln("KUBSAN: {} address {:p} with insufficient space for type {}", kind, ptr, data.type.name());

    print_location(data.location);
}

void __ubsan_handle_alignment_assumption(const AlignmentAssumptionData&, ValueHandle, ValueHandle, ValueHandle) __attribute__((used));
void __ubsan_handle_alignment_assumption(const AlignmentAssumptionData& data, ValueHandle pointer, ValueHandle alignment, ValueHandle offset)
{
    if (offset)
        critical_dmesgln("KUBSAN: assumption of {:p} byte alignment (with offset of {:p} byte) for pointer {:p} of type {} failed", alignment, offset, pointer, data.type.name());
    else
        critical_dmesgln("KUBSAN: assumption of {:p} byte alignment for pointer {:p} of type {} failed", alignment, pointer, data.type.name());

    print_location(data.location);
}

void __ubsan_handle_builtin_unreachable(const UnreachableData&) __attribute__((used));
void __ubsan_handle_builtin_unreachable(const UnreachableData& data)
{
    critical_dmesgln("KUBSAN: execution reached an unreachable program point");
    print_location(data.location);
}

void __ubsan_handle_missing_return(const UnreachableData&) __attribute__((used));
void __ubsan_handle_missing_return(const UnreachableData& data)
{
    critical_dmesgln("KUBSAN: execution reached the end of a value-returning function without returning a value");
    print_location(data.location);
}

void __ubsan_handle_implicit_conversion(const ImplicitConversionData&, ValueHandle, ValueHandle) __attribute__((used));
void __ubsan_handle_implicit_conversion(const ImplicitConversionData& data, ValueHandle, ValueHandle)
{
    const char* src_signed = data.from_type.is_signed() ? "" : "un";
    const char* dst_signed = data.to_type.is_signed() ? "" : "un";
    critical_dmesgln("KUBSAN: implicit conversion from type {} ({}-bit, {}signed) to type {} ({}-bit, {}signed)", data.from_type.name(), data.from_type.bit_width(), src_signed, data.to_type.name(), data.to_type.bit_width(), dst_signed);
    print_location(data.location);
}

void __ubsan_handle_invalid_builtin(const InvalidBuiltinData) __attribute__((used));
void __ubsan_handle_invalid_builtin(const InvalidBuiltinData data)
{
    critical_dmesgln("KUBSAN: passing invalid argument");
    print_location(data.location);
}

void __ubsan_handle_pointer_overflow(const PointerOverflowData&, ValueHandle, ValueHandle) __attribute__((used));
void __ubsan_handle_pointer_overflow(const PointerOverflowData& data, ValueHandle base, ValueHandle result)
{
    if (base == 0 && result == 0)
        critical_dmesgln("KUBSAN: applied zero offset to nullptr");
    else if (base == 0 && result != 0)
        critical_dmesgln("KUBSAN: applied non-zero offset {:p} to nullptr", result);
    else if (base != 0 && result == 0)
        critical_dmesgln("KUBSAN: applying non-zero offset to non-null pointer {:p} produced null pointer", base);
    else
        critical_dmesgln("KUBSAN: addition of unsigned offset to {:p} overflowed to {:p}", base, result);
    print_location(data.location);
}
}