summaryrefslogtreecommitdiff
path: root/Kernel/TimerQueue.cpp
blob: 8bf69f302e96ab80f70348f606467c16c3bf8e0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*
 * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Singleton.h>
#include <AK/Time.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Sections.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/TimerQueue.h>

namespace Kernel {

static Singleton<TimerQueue> s_the;
static Spinlock g_timerqueue_lock;

Time Timer::remaining() const
{
    return m_remaining;
}

Time Timer::now(bool is_firing) const
{
    // NOTE: If is_firing is true then TimePrecision::Precise isn't really useful here.
    // We already have a quite precise time stamp because we just updated the time in the
    // interrupt handler. In those cases, just use coarse timestamps.
    auto clock_id = m_clock_id;
    if (is_firing) {
        switch (clock_id) {
        case CLOCK_MONOTONIC:
            clock_id = CLOCK_MONOTONIC_COARSE;
            break;
        case CLOCK_MONOTONIC_RAW:
            // TODO: use a special CLOCK_MONOTONIC_RAW_COARSE like mechanism here
            break;
        case CLOCK_REALTIME:
            clock_id = CLOCK_REALTIME_COARSE;
            break;
        default:
            break;
        }
    }
    return TimeManagement::the().current_time(clock_id);
}

TimerQueue& TimerQueue::the()
{
    return *s_the;
}

UNMAP_AFTER_INIT TimerQueue::TimerQueue()
{
    m_ticks_per_second = TimeManagement::the().ticks_per_second();
}

bool TimerQueue::add_timer_without_id(NonnullRefPtr<Timer> timer, clockid_t clock_id, const Time& deadline, Function<void()>&& callback)
{
    if (deadline <= TimeManagement::the().current_time(clock_id))
        return false;

    // Because timer handlers can execute on any processor and there is
    // a race between executing a timer handler and cancel_timer() this
    // *must* be a RefPtr<Timer>. Otherwise calling cancel_timer() could
    // inadvertently cancel another timer that has been created between
    // returning from the timer handler and a call to cancel_timer().
    timer->setup(clock_id, deadline, move(callback));

    SpinlockLocker lock(g_timerqueue_lock);
    timer->m_id = 0; // Don't generate a timer id
    add_timer_locked(move(timer));
    return true;
}

TimerId TimerQueue::add_timer(NonnullRefPtr<Timer>&& timer)
{
    SpinlockLocker lock(g_timerqueue_lock);

    timer->m_id = ++m_timer_id_count;
    VERIFY(timer->m_id != 0); // wrapped
    auto id = timer->m_id;
    add_timer_locked(move(timer));
    return id;
}

void TimerQueue::add_timer_locked(NonnullRefPtr<Timer> timer)
{
    Time timer_expiration = timer->m_expires;

    timer->clear_cancelled();
    timer->clear_callback_finished();
    timer->set_in_use();

    auto& queue = queue_for_timer(*timer);
    if (queue.list.is_empty()) {
        queue.list.append(timer.leak_ref());
        queue.next_timer_due = timer_expiration;
    } else {
        Timer* following_timer = nullptr;
        for (auto& t : queue.list) {
            if (t.m_expires > timer_expiration) {
                following_timer = &t;
                break;
            }
        }
        if (following_timer) {
            bool next_timer_needs_update = queue.list.first() == following_timer;
            queue.list.insert_before(*following_timer, timer.leak_ref());
            if (next_timer_needs_update)
                queue.next_timer_due = timer_expiration;
        } else {
            queue.list.append(timer.leak_ref());
        }
    }
}

bool TimerQueue::cancel_timer(Timer& timer, bool* was_in_use)
{
    bool in_use = timer.is_in_use();
    if (was_in_use)
        *was_in_use = in_use;

    // If the timer isn't in use, the cancellation is a no-op.
    if (!in_use) {
        VERIFY(!timer.m_list_node.is_in_list());
        return false;
    }

    bool did_already_run = timer.set_cancelled();
    auto& timer_queue = queue_for_timer(timer);
    if (!did_already_run) {
        timer.clear_in_use();

        SpinlockLocker lock(g_timerqueue_lock);
        if (timer_queue.list.contains(timer)) {
            // The timer has not fired, remove it
            VERIFY(timer.ref_count() > 1);
            remove_timer_locked(timer_queue, timer);
            return true;
        }

        // The timer was queued to execute but hasn't had a chance
        // to run. In this case, it should still be in m_timers_executing
        // and we don't need to spin. It still holds a reference
        // that will be dropped when it does get a chance to run,
        // but since we called set_cancelled it will only drop its reference
        VERIFY(m_timers_executing.contains(timer));
        m_timers_executing.remove(timer);
        return true;
    }

    // At this point the deferred call is queued and is being executed
    // on another processor. We need to wait until it's complete!
    while (!timer.is_callback_finished())
        Processor::wait_check();

    return false;
}

void TimerQueue::remove_timer_locked(Queue& queue, Timer& timer)
{
    bool was_next_timer = (queue.list.first() == &timer);
    queue.list.remove(timer);
    auto now = timer.now(false);
    if (timer.m_expires > now)
        timer.m_remaining = timer.m_expires - now;

    if (was_next_timer)
        update_next_timer_due(queue);
    // Whenever we remove a timer that was still queued (but hasn't been
    // fired) we added a reference to it. So, when removing it from the
    // queue we need to drop that reference.
    timer.unref();
}

void TimerQueue::fire()
{
    SpinlockLocker lock(g_timerqueue_lock);

    auto fire_timers = [&](Queue& queue) {
        auto* timer = queue.list.first();
        VERIFY(timer);
        VERIFY(queue.next_timer_due == timer->m_expires);

        while (timer && timer->now(true) > timer->m_expires) {
            queue.list.remove(*timer);

            m_timers_executing.append(*timer);

            update_next_timer_due(queue);

            lock.unlock();

            // Defer executing the timer outside of the irq handler
            Processor::deferred_call_queue([this, timer]() {
                // Check if we were cancelled in between being triggered
                // by the timer irq handler and now. If so, just drop
                // our reference and don't execute the callback.
                if (!timer->set_cancelled()) {
                    timer->m_callback();
                    SpinlockLocker lock(g_timerqueue_lock);
                    m_timers_executing.remove(*timer);
                }
                timer->clear_in_use();
                timer->set_callback_finished();
                // Drop the reference we added when queueing the timer
                timer->unref();
            });

            lock.lock();
            timer = queue.list.first();
        }
    };

    if (!m_timer_queue_monotonic.list.is_empty())
        fire_timers(m_timer_queue_monotonic);
    if (!m_timer_queue_realtime.list.is_empty())
        fire_timers(m_timer_queue_realtime);
}

void TimerQueue::update_next_timer_due(Queue& queue)
{
    VERIFY(g_timerqueue_lock.is_locked());

    if (auto* next_timer = queue.list.first())
        queue.next_timer_due = next_timer->m_expires;
    else
        queue.next_timer_due = {};
}

}