summaryrefslogtreecommitdiff
path: root/Kernel/TimerQueue.cpp
blob: 2ccf22e55451ab4c1e988033d998a5316c7ff854 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/*
 * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Function.h>
#include <AK/NonnullOwnPtr.h>
#include <AK/OwnPtr.h>
#include <AK/Singleton.h>
#include <AK/Time.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/TimerQueue.h>

namespace Kernel {

static AK::Singleton<TimerQueue> s_the;
static SpinLock<u8> g_timerqueue_lock;

Time Timer::remaining() const
{
    return m_remaining;
}

Time Timer::now(bool is_firing) const
{
    // NOTE: If is_firing is true then TimePrecision::Precise isn't really useful here.
    // We already have a quite precise time stamp because we just updated the time in the
    // interrupt handler. In those cases, just use coarse timestamps.
    auto clock_id = m_clock_id;
    if (is_firing) {
        switch (clock_id) {
        case CLOCK_MONOTONIC:
            clock_id = CLOCK_MONOTONIC_COARSE;
            break;
        case CLOCK_MONOTONIC_RAW:
            // TODO: use a special CLOCK_MONOTONIC_RAW_COARSE like mechanism here
            break;
        case CLOCK_REALTIME:
            clock_id = CLOCK_REALTIME_COARSE;
            break;
        default:
            break;
        }
    }
    return TimeManagement::the().current_time(clock_id);
}

TimerQueue& TimerQueue::the()
{
    return *s_the;
}

UNMAP_AFTER_INIT TimerQueue::TimerQueue()
{
    m_ticks_per_second = TimeManagement::the().ticks_per_second();
}

bool TimerQueue::add_timer_without_id(NonnullRefPtr<Timer> timer, clockid_t clock_id, const Time& deadline, Function<void()>&& callback)
{
    if (deadline <= TimeManagement::the().current_time(clock_id))
        return false;

    // Because timer handlers can execute on any processor and there is
    // a race between executing a timer handler and cancel_timer() this
    // *must* be a RefPtr<Timer>. Otherwise calling cancel_timer() could
    // inadvertently cancel another timer that has been created between
    // returning from the timer handler and a call to cancel_timer().
    timer->setup(clock_id, deadline, move(callback));

    ScopedSpinLock lock(g_timerqueue_lock);
    timer->m_id = 0; // Don't generate a timer id
    add_timer_locked(move(timer));
    return true;
}

TimerId TimerQueue::add_timer(NonnullRefPtr<Timer>&& timer)
{
    ScopedSpinLock lock(g_timerqueue_lock);

    timer->m_id = ++m_timer_id_count;
    VERIFY(timer->m_id != 0); // wrapped
    add_timer_locked(move(timer));
    return timer->m_id;
}

void TimerQueue::add_timer_locked(NonnullRefPtr<Timer> timer)
{
    Time timer_expiration = timer->m_expires;

    VERIFY(!timer->is_queued());

    auto& queue = queue_for_timer(*timer);
    if (queue.list.is_empty()) {
        queue.list.append(&timer.leak_ref());
        queue.next_timer_due = timer_expiration;
    } else {
        Timer* following_timer = nullptr;
        queue.list.for_each([&](Timer& t) {
            if (t.m_expires > timer_expiration) {
                following_timer = &t;
                return IterationDecision::Break;
            }
            return IterationDecision::Continue;
        });
        if (following_timer) {
            bool next_timer_needs_update = queue.list.head() == following_timer;
            queue.list.insert_before(following_timer, &timer.leak_ref());
            if (next_timer_needs_update)
                queue.next_timer_due = timer_expiration;
        } else {
            queue.list.append(&timer.leak_ref());
        }
    }
}

TimerId TimerQueue::add_timer(clockid_t clock_id, const Time& deadline, Function<void()>&& callback)
{
    auto expires = TimeManagement::the().current_time(clock_id);
    expires = expires + deadline;
    auto timer = new Timer();
    VERIFY(timer);
    timer->setup(clock_id, expires, move(callback));
    return add_timer(adopt_ref(*timer));
}

bool TimerQueue::cancel_timer(TimerId id)
{
    Timer* found_timer = nullptr;
    Queue* timer_queue = nullptr;

    ScopedSpinLock lock(g_timerqueue_lock);
    if (m_timer_queue_monotonic.list.for_each([&](Timer& timer) {
            if (timer.m_id == id) {
                found_timer = &timer;
                timer_queue = &m_timer_queue_monotonic;
                return IterationDecision::Break;
            }
            return IterationDecision::Continue;
        })
        != IterationDecision::Break) {
        m_timer_queue_realtime.list.for_each([&](Timer& timer) {
            if (timer.m_id == id) {
                found_timer = &timer;
                timer_queue = &m_timer_queue_realtime;
                return IterationDecision::Break;
            }
            return IterationDecision::Continue;
        });
    }

    if (!found_timer) {
        // The timer may be executing right now, if it is then it should
        // be in m_timers_executing. If it is then release the lock
        // briefly to allow it to finish by removing itself
        // NOTE: This can only happen with multiple processors!
        while (m_timers_executing.for_each([&](Timer& timer) {
            if (timer.m_id == id)
                return IterationDecision::Break;
            return IterationDecision::Continue;
        }) == IterationDecision::Break) {
            // NOTE: This isn't the most efficient way to wait, but
            // it should only happen when multiple processors are used.
            // Also, the timers should execute pretty quickly, so it
            // should not loop here for very long. But we can't yield.
            lock.unlock();
            Processor::wait_check();
            lock.lock();
        }
        // We were not able to cancel the timer, but at this point
        // the handler should have completed if it was running!
        return false;
    }

    VERIFY(found_timer);
    VERIFY(timer_queue);
    remove_timer_locked(*timer_queue, *found_timer);
    return true;
}

bool TimerQueue::cancel_timer(Timer& timer)
{
    auto& timer_queue = queue_for_timer(timer);
    ScopedSpinLock lock(g_timerqueue_lock);
    if (!timer_queue.list.contains_slow(&timer)) {
        // The timer may be executing right now, if it is then it should
        // be in m_timers_executing. If it is then release the lock
        // briefly to allow it to finish by removing itself
        // NOTE: This can only happen with multiple processors!
        while (m_timers_executing.contains_slow(&timer)) {
            // NOTE: This isn't the most efficient way to wait, but
            // it should only happen when multiple processors are used.
            // Also, the timers should execute pretty quickly, so it
            // should not loop here for very long. But we can't yield.
            lock.unlock();
            Processor::wait_check();
            lock.lock();
        }
        // We were not able to cancel the timer, but at this point
        // the handler should have completed if it was running!
        return false;
    }

    VERIFY(timer.ref_count() > 1);
    remove_timer_locked(timer_queue, timer);
    return true;
}

void TimerQueue::remove_timer_locked(Queue& queue, Timer& timer)
{
    bool was_next_timer = (queue.list.head() == &timer);
    queue.list.remove(&timer);
    timer.set_queued(false);
    auto now = timer.now(false);
    if (timer.m_expires > now)
        timer.m_remaining = timer.m_expires - now;

    if (was_next_timer)
        update_next_timer_due(queue);
    // Whenever we remove a timer that was still queued (but hasn't been
    // fired) we added a reference to it. So, when removing it from the
    // queue we need to drop that reference.
    timer.unref();
}

void TimerQueue::fire()
{
    ScopedSpinLock lock(g_timerqueue_lock);

    auto fire_timers = [&](Queue& queue) {
        auto* timer = queue.list.head();
        VERIFY(timer);
        VERIFY(queue.next_timer_due == timer->m_expires);

        while (timer && timer->now(true) > timer->m_expires) {
            queue.list.remove(timer);
            timer->set_queued(false);

            m_timers_executing.append(timer);

            update_next_timer_due(queue);

            lock.unlock();

            // Defer executing the timer outside of the irq handler
            Processor::current().deferred_call_queue([this, timer]() {
                timer->m_callback();
                ScopedSpinLock lock(g_timerqueue_lock);
                m_timers_executing.remove(timer);
                // Drop the reference we added when queueing the timer
                timer->unref();
            });

            lock.lock();
            timer = queue.list.head();
        }
    };

    if (!m_timer_queue_monotonic.list.is_empty())
        fire_timers(m_timer_queue_monotonic);
    if (!m_timer_queue_realtime.list.is_empty())
        fire_timers(m_timer_queue_realtime);
}

void TimerQueue::update_next_timer_due(Queue& queue)
{
    VERIFY(g_timerqueue_lock.is_locked());

    if (auto* next_timer = queue.list.head())
        queue.next_timer_due = next_timer->m_expires;
    else
        queue.next_timer_due = {};
}

}