blob: 783d1a6cdfc2d10af08d57903a059ed1809a10de (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
|
#include <AK/Function.h>
#include <AK/NonnullOwnPtr.h>
#include <AK/OwnPtr.h>
#include <Kernel/Scheduler.h>
#include <Kernel/TimerQueue.h>
static TimerQueue* s_the;
TimerQueue& TimerQueue::the()
{
if (!s_the)
s_the = new TimerQueue;
return *s_the;
}
u64 TimerQueue::add_timer(NonnullOwnPtr<Timer>&& timer)
{
ASSERT(timer->expires > g_uptime);
timer->id = ++m_timer_id_count;
auto following_timer = m_timer_queue.find([&timer](auto& other) { return other->expires > timer->expires; });
if (following_timer.is_end())
m_timer_queue.append(move(timer));
else
m_timer_queue.insert_before(following_timer, move(timer));
update_next_timer_due();
return m_timer_id_count;
}
u64 TimerQueue::add_timer(u64 duration, TimeUnit unit, Function<void()>&& callback)
{
NonnullOwnPtr timer = make<Timer>();
timer->expires = g_uptime + duration * unit;
timer->callback = move(callback);
return add_timer(move(timer));
}
bool TimerQueue::cancel_timer(u64 id)
{
auto it = m_timer_queue.find([id](auto& timer) { return timer->id == id; });
if (it.is_end())
return false;
m_timer_queue.remove(it);
update_next_timer_due();
return true;
}
void TimerQueue::fire()
{
if (m_timer_queue.is_empty())
return;
ASSERT(m_next_timer_due == m_timer_queue.first()->expires);
while (!m_timer_queue.is_empty() && g_uptime > m_timer_queue.first()->expires) {
auto timer = m_timer_queue.take_first();
timer->callback();
}
update_next_timer_due();
}
void TimerQueue::update_next_timer_due()
{
if (m_timer_queue.is_empty())
m_next_timer_due = 0;
else
m_next_timer_due = m_timer_queue.first()->expires;
}
|