summaryrefslogtreecommitdiff
path: root/Kernel/Time/TimeManagement.cpp
blob: e11eb4722666a8dd20c8ac17e18dcda11c43478e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
/*
 * Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
 * Copyright (c) 2022, Timon Kruiper <timonkruiper@gmail.com>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/Singleton.h>
#include <AK/StdLibExtras.h>
#include <AK/Time.h>
#if ARCH(X86_64)
#    include <Kernel/Arch/x86_64/Interrupts/APIC.h>
#    include <Kernel/Arch/x86_64/RTC.h>
#    include <Kernel/Arch/x86_64/Time/APICTimer.h>
#    include <Kernel/Arch/x86_64/Time/HPET.h>
#    include <Kernel/Arch/x86_64/Time/HPETComparator.h>
#    include <Kernel/Arch/x86_64/Time/PIT.h>
#    include <Kernel/Arch/x86_64/Time/RTC.h>
#elif ARCH(AARCH64)
#    include <Kernel/Arch/aarch64/RPi/Timer.h>
#else
#    error Unknown architecture
#endif

#include <Kernel/Arch/CurrentTime.h>
#include <Kernel/CommandLine.h>
#include <Kernel/Firmware/ACPI/Parser.h>
#include <Kernel/InterruptDisabler.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Sections.h>
#include <Kernel/Time/HardwareTimer.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/TimerQueue.h>

namespace Kernel {

static Singleton<TimeManagement> s_the;

bool TimeManagement::is_initialized()
{
    return s_the.is_initialized();
}

TimeManagement& TimeManagement::the()
{
    return *s_the;
}

// The s_scheduler_specific_current_time function provides a current time for scheduling purposes,
// which may not necessarily relate to wall time
static u64 (*s_scheduler_current_time)();

static u64 current_time_monotonic()
{
    // We always need a precise timestamp here, we cannot rely on a coarse timestamp
    return (u64)TimeManagement::the().monotonic_time(TimePrecision::Precise).to_nanoseconds();
}

u64 TimeManagement::scheduler_current_time()
{
    VERIFY(s_scheduler_current_time);
    return s_scheduler_current_time();
}

ErrorOr<void> TimeManagement::validate_clock_id(clockid_t clock_id)
{
    switch (clock_id) {
    case CLOCK_MONOTONIC:
    case CLOCK_MONOTONIC_COARSE:
    case CLOCK_MONOTONIC_RAW:
    case CLOCK_REALTIME:
    case CLOCK_REALTIME_COARSE:
        return {};
    default:
        return EINVAL;
    };
}

Time TimeManagement::current_time(clockid_t clock_id) const
{
    switch (clock_id) {
    case CLOCK_MONOTONIC:
        return monotonic_time(TimePrecision::Precise);
    case CLOCK_MONOTONIC_COARSE:
        return monotonic_time(TimePrecision::Coarse);
    case CLOCK_MONOTONIC_RAW:
        return monotonic_time_raw();
    case CLOCK_REALTIME:
        return epoch_time(TimePrecision::Precise);
    case CLOCK_REALTIME_COARSE:
        return epoch_time(TimePrecision::Coarse);
    default:
        // Syscall entrypoint is missing a is_valid_clock_id(..) check?
        VERIFY_NOT_REACHED();
    }
}

bool TimeManagement::is_system_timer(HardwareTimerBase const& timer) const
{
    return &timer == m_system_timer.ptr();
}

void TimeManagement::set_epoch_time(Time ts)
{
    InterruptDisabler disabler;
    // FIXME: Should use AK::Time internally
    m_epoch_time = ts.to_timespec();
    m_remaining_epoch_time_adjustment = { 0, 0 };
}

Time TimeManagement::monotonic_time(TimePrecision precision) const
{
    // This is the time when last updated by an interrupt.
    u64 seconds;
    u32 ticks;

    bool do_query = precision == TimePrecision::Precise && m_can_query_precise_time;

    u32 update_iteration;
    do {
        update_iteration = m_update1.load(AK::MemoryOrder::memory_order_acquire);
        seconds = m_seconds_since_boot;
        ticks = m_ticks_this_second;

        if (do_query) {
#if ARCH(X86_64)
            // We may have to do this over again if the timer interrupt fires
            // while we're trying to query the information. In that case, our
            // seconds and ticks became invalid, producing an incorrect time.
            // Be sure to not modify m_seconds_since_boot and m_ticks_this_second
            // because this may only be modified by the interrupt handler
            HPET::the().update_time(seconds, ticks, true);
#elif ARCH(AARCH64)
            // FIXME: Get rid of these horrible casts
            const_cast<RPi::Timer*>(static_cast<RPi::Timer const*>(m_system_timer.ptr()))->update_time(seconds, ticks, true);
#else
#    error Unknown architecture
#endif
        }
    } while (update_iteration != m_update2.load(AK::MemoryOrder::memory_order_acquire));

    VERIFY(m_time_ticks_per_second > 0);
    VERIFY(ticks < m_time_ticks_per_second);
    u64 ns = ((u64)ticks * 1000000000ull) / m_time_ticks_per_second;
    VERIFY(ns < 1000000000ull);
    return Time::from_timespec({ (i64)seconds, (i32)ns });
}

Time TimeManagement::epoch_time(TimePrecision) const
{
    // TODO: Take into account precision
    timespec ts;
    u32 update_iteration;
    do {
        update_iteration = m_update1.load(AK::MemoryOrder::memory_order_acquire);
        ts = m_epoch_time;
    } while (update_iteration != m_update2.load(AK::MemoryOrder::memory_order_acquire));
    return Time::from_timespec(ts);
}

u64 TimeManagement::uptime_ms() const
{
    auto mtime = monotonic_time().to_timespec();
    // This overflows after 292 million years of uptime.
    // Since this is only used for performance timestamps and sys$times, that's probably enough.
    u64 ms = mtime.tv_sec * 1000ull;
    ms += mtime.tv_nsec / 1000000;
    return ms;
}

UNMAP_AFTER_INIT void TimeManagement::initialize([[maybe_unused]] u32 cpu)
{
    // Note: We must disable interrupts, because the timers interrupt might fire before
    //       the TimeManagement class is completely initialized.
    InterruptDisabler disabler;

#if ARCH(X86_64)
    if (cpu == 0) {
        VERIFY(!s_the.is_initialized());
        s_the.ensure_instance();

        if (APIC::initialized()) {
            // Initialize the APIC timers after the other timers as the
            // initialization needs to briefly enable interrupts, which then
            // would trigger a deadlock trying to get the s_the instance while
            // creating it.
            if (auto* apic_timer = APIC::the().initialize_timers(*s_the->m_system_timer)) {
                dmesgln("Time: Using APIC timer as system timer");
                s_the->set_system_timer(*apic_timer);
            }
        }
    } else {
        VERIFY(s_the.is_initialized());
        if (auto* apic_timer = APIC::the().get_timer()) {
            dmesgln("Time: Enable APIC timer on CPU #{}", cpu);
            apic_timer->enable_local_timer();
        }
    }
#elif ARCH(AARCH64)
    if (cpu == 0) {
        VERIFY(!s_the.is_initialized());
        s_the.ensure_instance();
    }
#else
#    error Unknown architecture
#endif
    auto* possible_arch_specific_current_time_function = optional_current_time();
    if (possible_arch_specific_current_time_function)
        s_scheduler_current_time = possible_arch_specific_current_time_function;
    else
        s_scheduler_current_time = current_time_monotonic;
}

void TimeManagement::set_system_timer(HardwareTimerBase& timer)
{
    VERIFY(Processor::is_bootstrap_processor()); // This should only be called on the BSP!
    auto original_callback = m_system_timer->set_callback(nullptr);
    m_system_timer->disable();
    timer.set_callback(move(original_callback));
    m_system_timer = timer;
}

time_t TimeManagement::ticks_per_second() const
{
    return m_time_keeper_timer->ticks_per_second();
}

Time TimeManagement::boot_time()
{
#if ARCH(X86_64)
    return RTC::boot_time();
#elif ARCH(AARCH64)
    TODO_AARCH64();
#else
#    error Unknown architecture
#endif
}

Time TimeManagement::clock_resolution() const
{
    long nanoseconds_per_tick = 1'000'000'000 / m_time_keeper_timer->ticks_per_second();
    return Time::from_nanoseconds(nanoseconds_per_tick);
}

UNMAP_AFTER_INIT TimeManagement::TimeManagement()
    : m_time_page_region(MM.allocate_kernel_region(PAGE_SIZE, "Time page"sv, Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow).release_value_but_fixme_should_propagate_errors())
{
#if ARCH(X86_64)
    bool probe_non_legacy_hardware_timers = !(kernel_command_line().is_legacy_time_enabled());
    if (ACPI::is_enabled()) {
        if (!ACPI::Parser::the()->x86_specific_flags().cmos_rtc_not_present) {
            RTC::initialize();
            m_epoch_time.tv_sec += boot_time().to_timespec().tv_sec;
        } else {
            dmesgln("ACPI: RTC CMOS Not present");
        }
    } else {
        // We just assume that we can access RTC CMOS, if ACPI isn't usable.
        RTC::initialize();
        m_epoch_time.tv_sec += boot_time().to_timespec().tv_sec;
    }
    if (probe_non_legacy_hardware_timers) {
        if (!probe_and_set_x86_non_legacy_hardware_timers())
            if (!probe_and_set_x86_legacy_hardware_timers())
                VERIFY_NOT_REACHED();
    } else if (!probe_and_set_x86_legacy_hardware_timers()) {
        VERIFY_NOT_REACHED();
    }
#elif ARCH(AARCH64)
    probe_and_set_aarch64_hardware_timers();
#else
#    error Unknown architecture
#endif
}

Time TimeManagement::now()
{
    return s_the.ptr()->epoch_time();
}

UNMAP_AFTER_INIT Vector<HardwareTimerBase*> TimeManagement::scan_and_initialize_periodic_timers()
{
    bool should_enable = is_hpet_periodic_mode_allowed();
    dbgln("Time: Scanning for periodic timers");
    Vector<HardwareTimerBase*> timers;
    for (auto& hardware_timer : m_hardware_timers) {
        if (hardware_timer.is_periodic_capable()) {
            timers.append(&hardware_timer);
            if (should_enable)
                hardware_timer.set_periodic();
        }
    }
    return timers;
}

UNMAP_AFTER_INIT Vector<HardwareTimerBase*> TimeManagement::scan_for_non_periodic_timers()
{
    dbgln("Time: Scanning for non-periodic timers");
    Vector<HardwareTimerBase*> timers;
    for (auto& hardware_timer : m_hardware_timers) {
        if (!hardware_timer.is_periodic_capable())
            timers.append(&hardware_timer);
    }
    return timers;
}

bool TimeManagement::is_hpet_periodic_mode_allowed()
{
    switch (kernel_command_line().hpet_mode()) {
    case HPETMode::Periodic:
        return true;
    case HPETMode::NonPeriodic:
        return false;
    default:
        VERIFY_NOT_REACHED();
    }
}

#if ARCH(X86_64)
UNMAP_AFTER_INIT bool TimeManagement::probe_and_set_x86_non_legacy_hardware_timers()
{
    if (!ACPI::is_enabled())
        return false;
    if (!HPET::test_and_initialize())
        return false;
    if (!HPET::the().comparators().size()) {
        dbgln("HPET initialization aborted.");
        return false;
    }
    dbgln("HPET: Setting appropriate functions to timers.");

    for (auto& hpet_comparator : HPET::the().comparators())
        m_hardware_timers.append(hpet_comparator);

    auto periodic_timers = scan_and_initialize_periodic_timers();
    auto non_periodic_timers = scan_for_non_periodic_timers();

    if (is_hpet_periodic_mode_allowed())
        VERIFY(!periodic_timers.is_empty());

    VERIFY(periodic_timers.size() + non_periodic_timers.size() > 0);

    size_t taken_periodic_timers_count = 0;
    size_t taken_non_periodic_timers_count = 0;

    if (periodic_timers.size() > taken_periodic_timers_count) {
        m_system_timer = periodic_timers[taken_periodic_timers_count];
        taken_periodic_timers_count += 1;
    } else if (non_periodic_timers.size() > taken_non_periodic_timers_count) {
        m_system_timer = non_periodic_timers[taken_non_periodic_timers_count];
        taken_non_periodic_timers_count += 1;
    }

    m_system_timer->set_callback([this](RegisterState const& regs) {
        // Update the time. We don't really care too much about the
        // frequency of the interrupt because we'll query the main
        // counter to get an accurate time.
        if (Processor::is_bootstrap_processor()) {
            // TODO: Have the other CPUs call system_timer_tick directly
            increment_time_since_boot_hpet();
        }

        system_timer_tick(regs);
    });

    // Use the HPET main counter frequency for time purposes. This is likely
    // a much higher frequency than the interrupt itself and allows us to
    // keep a more accurate time
    m_can_query_precise_time = true;
    m_time_ticks_per_second = HPET::the().frequency();

    m_system_timer->try_to_set_frequency(m_system_timer->calculate_nearest_possible_frequency(OPTIMAL_TICKS_PER_SECOND_RATE));

    // We don't need an interrupt for time keeping purposes because we
    // can query the timer.
    m_time_keeper_timer = m_system_timer;

    if (periodic_timers.size() > taken_periodic_timers_count) {
        m_profile_timer = periodic_timers[taken_periodic_timers_count];
        taken_periodic_timers_count += 1;
    } else if (non_periodic_timers.size() > taken_non_periodic_timers_count) {
        m_profile_timer = non_periodic_timers[taken_non_periodic_timers_count];
        taken_non_periodic_timers_count += 1;
    }

    if (m_profile_timer) {
        m_profile_timer->set_callback(PerformanceManager::timer_tick);
        m_profile_timer->try_to_set_frequency(m_profile_timer->calculate_nearest_possible_frequency(1));
    }

    return true;
}

UNMAP_AFTER_INIT bool TimeManagement::probe_and_set_x86_legacy_hardware_timers()
{
    if (ACPI::is_enabled()) {
        if (ACPI::Parser::the()->x86_specific_flags().cmos_rtc_not_present) {
            dbgln("ACPI: CMOS RTC Not Present");
            return false;
        } else {
            dbgln("ACPI: CMOS RTC Present");
        }
    }

    m_hardware_timers.append(PIT::initialize(TimeManagement::update_time));
    m_hardware_timers.append(RealTimeClock::create(TimeManagement::system_timer_tick));
    m_time_keeper_timer = m_hardware_timers[0];
    m_system_timer = m_hardware_timers[1];

    // The timer is only as accurate as the interrupts...
    m_time_ticks_per_second = m_time_keeper_timer->ticks_per_second();
    return true;
}

void TimeManagement::update_time(RegisterState const&)
{
    TimeManagement::the().increment_time_since_boot();
}

void TimeManagement::increment_time_since_boot_hpet()
{
    VERIFY(!m_time_keeper_timer.is_null());
    VERIFY(m_time_keeper_timer->timer_type() == HardwareTimerType::HighPrecisionEventTimer);

    // NOTE: m_seconds_since_boot and m_ticks_this_second are only ever
    // updated here! So we can safely read that information, query the clock,
    // and when we're all done we can update the information. This reduces
    // contention when other processors attempt to read the clock.
    auto seconds_since_boot = m_seconds_since_boot;
    auto ticks_this_second = m_ticks_this_second;
    auto delta_ns = HPET::the().update_time(seconds_since_boot, ticks_this_second, false);

    // Now that we have a precise time, go update it as quickly as we can
    u32 update_iteration = m_update2.fetch_add(1, AK::MemoryOrder::memory_order_acquire);
    m_seconds_since_boot = seconds_since_boot;
    m_ticks_this_second = ticks_this_second;
    // TODO: Apply m_remaining_epoch_time_adjustment
    timespec_add(m_epoch_time, { (time_t)(delta_ns / 1000000000), (long)(delta_ns % 1000000000) }, m_epoch_time);

    m_update1.store(update_iteration + 1, AK::MemoryOrder::memory_order_release);

    update_time_page();
}
#elif ARCH(AARCH64)
UNMAP_AFTER_INIT bool TimeManagement::probe_and_set_aarch64_hardware_timers()
{
    m_hardware_timers.append(RPi::Timer::initialize());
    m_system_timer = m_hardware_timers[0];
    m_time_ticks_per_second = m_system_timer->frequency();

    m_system_timer->set_callback([this](RegisterState const& regs) {
        auto seconds_since_boot = m_seconds_since_boot;
        auto ticks_this_second = m_ticks_this_second;
        auto delta_ns = static_cast<RPi::Timer*>(m_system_timer.ptr())->update_time(seconds_since_boot, ticks_this_second, false);

        u32 update_iteration = m_update2.fetch_add(1, AK::MemoryOrder::memory_order_acquire);
        m_seconds_since_boot = seconds_since_boot;
        m_ticks_this_second = ticks_this_second;

        timespec_add(m_epoch_time, { (time_t)(delta_ns / 1000000000), (long)(delta_ns % 1000000000) }, m_epoch_time);

        m_update1.store(update_iteration + 1, AK::MemoryOrder::memory_order_release);

        update_time_page();

        system_timer_tick(regs);
    });

    m_time_keeper_timer = m_system_timer;

    return true;
}
#else
#    error Unknown architecture
#endif

void TimeManagement::increment_time_since_boot()
{
    VERIFY(!m_time_keeper_timer.is_null());

    // Compute time adjustment for adjtime. Let the clock run up to 1% fast or slow.
    // That way, adjtime can adjust up to 36 seconds per hour, without time getting very jumpy.
    // Once we have a smarter NTP service that also adjusts the frequency instead of just slewing time, maybe we can lower this.
    long NanosPerTick = 1'000'000'000 / m_time_keeper_timer->frequency();
    time_t MaxSlewNanos = NanosPerTick / 100;

    u32 update_iteration = m_update2.fetch_add(1, AK::MemoryOrder::memory_order_acquire);

    // Clamp twice, to make sure intermediate fits into a long.
    long slew_nanos = clamp(clamp(m_remaining_epoch_time_adjustment.tv_sec, (time_t)-1, (time_t)1) * 1'000'000'000 + m_remaining_epoch_time_adjustment.tv_nsec, -MaxSlewNanos, MaxSlewNanos);
    timespec slew_nanos_ts;
    timespec_sub({ 0, slew_nanos }, { 0, 0 }, slew_nanos_ts); // Normalize tv_nsec to be positive.
    timespec_sub(m_remaining_epoch_time_adjustment, slew_nanos_ts, m_remaining_epoch_time_adjustment);

    timespec epoch_tick = { .tv_sec = 0, .tv_nsec = NanosPerTick };
    epoch_tick.tv_nsec += slew_nanos; // No need for timespec_add(), guaranteed to be in range.
    timespec_add(m_epoch_time, epoch_tick, m_epoch_time);

    if (++m_ticks_this_second >= m_time_keeper_timer->ticks_per_second()) {
        // FIXME: Synchronize with other clock somehow to prevent drifting apart.
        ++m_seconds_since_boot;
        m_ticks_this_second = 0;
    }

    m_update1.store(update_iteration + 1, AK::MemoryOrder::memory_order_release);

    update_time_page();
}

void TimeManagement::system_timer_tick(RegisterState const& regs)
{
    if (Processor::current_in_irq() <= 1) {
        // Don't expire timers while handling IRQs
        TimerQueue::the().fire();
    }
    Scheduler::timer_tick(regs);
}

bool TimeManagement::enable_profile_timer()
{
    if (!m_profile_timer)
        return false;
    if (m_profile_enable_count.fetch_add(1) == 0)
        return m_profile_timer->try_to_set_frequency(m_profile_timer->calculate_nearest_possible_frequency(OPTIMAL_PROFILE_TICKS_PER_SECOND_RATE));
    return true;
}

bool TimeManagement::disable_profile_timer()
{
    if (!m_profile_timer)
        return false;
    if (m_profile_enable_count.fetch_sub(1) == 1)
        return m_profile_timer->try_to_set_frequency(m_profile_timer->calculate_nearest_possible_frequency(1));
    return true;
}

void TimeManagement::update_time_page()
{
    auto& page = time_page();
    u32 update_iteration = AK::atomic_fetch_add(&page.update2, 1u, AK::MemoryOrder::memory_order_acquire);
    page.clocks[CLOCK_REALTIME_COARSE] = m_epoch_time;
    page.clocks[CLOCK_MONOTONIC_COARSE] = monotonic_time(TimePrecision::Coarse).to_timespec();
    AK::atomic_store(&page.update1, update_iteration + 1u, AK::MemoryOrder::memory_order_release);
}

TimePage& TimeManagement::time_page()
{
    return *static_cast<TimePage*>((void*)m_time_page_region->vaddr().as_ptr());
}

Memory::VMObject& TimeManagement::time_page_vmobject()
{
    return m_time_page_region->vmobject();
}

}