1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
/*
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/StringView.h>
#include <Kernel/ACPI/Parser.h>
#include <Kernel/Interrupts/InterruptManagement.h>
#include <Kernel/Time/HPET.h>
#include <Kernel/Time/HPETComparator.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/TypedMapping.h>
namespace Kernel {
#define ABSOLUTE_MAXIMUM_COUNTER_TICK_PERIOD 0x05F5E100
#define NANOSECOND_PERIOD_TO_HERTZ(x) 1000000000 / x
#define MEGAHERTZ_TO_HERTZ(x) (x / 1000000)
//#define HPET_DEBUG
namespace HPETFlags {
enum class Attributes {
Counter64BitCapable = 1 << 13,
LegacyReplacementRouteCapable = 1 << 15
};
enum class Configuration {
Enable = 0x1,
LegacyReplacementRoute = 0x2
};
enum class TimerConfiguration : u32 {
InterruptType = 1 << 1,
InterruptEnable = 1 << 2,
TimerType = 1 << 3,
PeriodicInterruptCapable = 1 << 4,
Timer64BitsCapable = 1 << 5,
ValueSet = 1 << 6,
Force32BitMode = 1 << 7,
FSBInterruptEnable = 1 << 14,
FSBInterruptDelivery = 1 << 15
};
};
struct [[gnu::packed]] TimerStructure
{
u64 configuration_and_capability;
u64 comparator_value;
u64 fsb_interrupt_route;
u64 reserved;
};
struct [[gnu::packed]] HPETCapabilityRegister
{
u32 attributes; // Note: We must do a 32 bit access to offsets 0x0, or 0x4 only, according to HPET spec.
u32 main_counter_tick_period;
u64 reserved;
};
struct [[gnu::packed]] HPETRegister
{
u64 reg;
u64 reserved;
};
struct [[gnu::packed]] HPETRegistersBlock
{
union {
HPETCapabilityRegister capabilities;
HPETRegister raw_capabilites;
};
HPETRegister configuration;
HPETRegister interrupt_status;
u8 reserved[0xF0 - 48];
HPETRegister main_counter_value;
TimerStructure timers[3];
u8 reserved2[0x400 - 0x160];
};
static HPET* s_hpet;
static bool hpet_initialized { false };
bool HPET::initialized()
{
return hpet_initialized;
}
HPET& HPET::the()
{
ASSERT(HPET::initialized());
ASSERT(s_hpet != nullptr);
return *s_hpet;
}
bool HPET::test_and_initialize()
{
ASSERT(!HPET::initialized());
hpet_initialized = true;
auto hpet = ACPI::Parser::the()->find_table("HPET");
if (hpet.is_null())
return false;
klog() << "HPET @ " << hpet;
auto sdt = map_typed<ACPI::Structures::HPET>(hpet);
// Note: HPET is only usable from System Memory
ASSERT(sdt->event_timer_block.address_space == (u8)ACPI::GenericAddressStructure::AddressSpace::SystemMemory);
if (TimeManagement::is_hpet_periodic_mode_allowed()) {
if (!check_for_exisiting_periodic_timers()) {
dbg() << "HPET: No periodic capable timers";
return false;
}
}
s_hpet = new HPET(PhysicalAddress(hpet));
return true;
}
bool HPET::check_for_exisiting_periodic_timers()
{
auto hpet = ACPI::Parser::the()->find_table("HPET");
if (hpet.is_null())
return false;
auto sdt = map_typed<ACPI::Structures::HPET>(hpet);
ASSERT(sdt->event_timer_block.address_space == 0);
auto registers = map_typed<volatile HPETRegistersBlock>(PhysicalAddress(sdt->event_timer_block.address));
size_t timers_count = ((registers->raw_capabilites.reg >> 8) & 0x1f) + 1;
for (size_t index = 0; index < timers_count; index++) {
if (registers->timers[index].configuration_and_capability & (u32)HPETFlags::TimerConfiguration::PeriodicInterruptCapable)
return true;
}
return false;
}
void HPET::global_disable()
{
registers().configuration.reg = registers().configuration.reg & ~(u32)HPETFlags::Configuration::Enable;
}
void HPET::global_enable()
{
registers().configuration.reg = registers().configuration.reg | (u32)HPETFlags::Configuration::Enable;
}
void HPET::set_periodic_comparator_value(const HPETComparator& comparator, u64 value)
{
disable(comparator);
ASSERT(comparator.is_periodic());
ASSERT(comparator.comparator_number() <= m_comparators.size());
volatile auto& timer = registers().timers[comparator.comparator_number()];
timer.configuration_and_capability = timer.configuration_and_capability | (u32)HPETFlags::TimerConfiguration::ValueSet;
timer.comparator_value = value;
enable(comparator);
}
void HPET::set_non_periodic_comparator_value(const HPETComparator& comparator, u64 value)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(!comparator.is_periodic());
ASSERT(comparator.comparator_number() <= m_comparators.size());
registers().timers[comparator.comparator_number()].comparator_value = main_counter_value() + value;
}
void HPET::enable_periodic_interrupt(const HPETComparator& comparator)
{
#ifdef HPET_DEBUG
klog() << "HPET: Set comparator " << comparator.comparator_number() << " to be periodic.";
#endif
disable(comparator);
ASSERT(comparator.comparator_number() <= m_comparators.size());
volatile auto& timer = registers().timers[comparator.comparator_number()];
auto configuration_and_capability = timer.configuration_and_capability;
ASSERT(configuration_and_capability & (u32)HPETFlags::TimerConfiguration::PeriodicInterruptCapable);
timer.configuration_and_capability = configuration_and_capability | (u32)HPETFlags::TimerConfiguration::TimerType;
enable(comparator);
}
void HPET::disable_periodic_interrupt(const HPETComparator& comparator)
{
#ifdef HPET_DEBUG
klog() << "HPET: Disable periodic interrupt in comparator " << comparator.comparator_number() << ".";
#endif
disable(comparator);
ASSERT(comparator.comparator_number() <= m_comparators.size());
auto volatile& timer = registers().timers[comparator.comparator_number()];
auto configuration_and_capability = timer.configuration_and_capability;
ASSERT(configuration_and_capability & (u32)HPETFlags::TimerConfiguration::PeriodicInterruptCapable);
timer.configuration_and_capability = configuration_and_capability & ~(u32)HPETFlags::TimerConfiguration::TimerType;
enable(comparator);
}
void HPET::disable(const HPETComparator& comparator)
{
#ifdef HPET_DEBUG
klog() << "HPET: Disable comparator " << comparator.comparator_number() << ".";
#endif
ASSERT(comparator.comparator_number() <= m_comparators.size());
volatile auto& timer = registers().timers[comparator.comparator_number()];
timer.configuration_and_capability = timer.configuration_and_capability & ~(u32)HPETFlags::TimerConfiguration::InterruptEnable;
}
void HPET::enable(const HPETComparator& comparator)
{
#ifdef HPET_DEBUG
klog() << "HPET: Enable comparator " << comparator.comparator_number() << ".";
#endif
ASSERT(comparator.comparator_number() <= m_comparators.size());
volatile auto& timer = registers().timers[comparator.comparator_number()];
timer.configuration_and_capability = timer.configuration_and_capability | (u32)HPETFlags::TimerConfiguration::InterruptEnable;
}
u64 HPET::main_counter_value() const
{
return registers().main_counter_value.reg;
}
u64 HPET::frequency() const
{
return m_frequency;
}
Vector<unsigned> HPET::capable_interrupt_numbers(const HPETComparator& comparator)
{
ASSERT(comparator.comparator_number() <= m_comparators.size());
Vector<unsigned> capable_interrupts;
auto& comparator_registers = (const volatile TimerStructure&)registers().timers[comparator.comparator_number()];
u32 interrupt_bitfield = comparator_registers.configuration_and_capability >> 32;
for (size_t index = 0; index < 32; index++) {
if (interrupt_bitfield & 1)
capable_interrupts.append(index);
interrupt_bitfield >>= 1;
}
return capable_interrupts;
}
Vector<unsigned> HPET::capable_interrupt_numbers(u8 comparator_number)
{
ASSERT(comparator_number <= m_comparators.size());
Vector<unsigned> capable_interrupts;
auto& comparator_registers = (const volatile TimerStructure&)registers().timers[comparator_number];
u32 interrupt_bitfield = comparator_registers.configuration_and_capability >> 32;
for (size_t index = 0; index < 32; index++) {
if (interrupt_bitfield & 1)
capable_interrupts.append(index);
interrupt_bitfield >>= 1;
}
return capable_interrupts;
}
void HPET::set_comparator_irq_vector(u8 comparator_number, u8 irq_vector)
{
ASSERT(comparator_number <= m_comparators.size());
auto& comparator_registers = (volatile TimerStructure&)registers().timers[comparator_number];
comparator_registers.configuration_and_capability = comparator_registers.configuration_and_capability | (irq_vector << 9);
}
bool HPET::is_periodic_capable(u8 comparator_number) const
{
ASSERT(comparator_number <= m_comparators.size());
auto& comparator_registers = (const volatile TimerStructure&)registers().timers[comparator_number];
return comparator_registers.configuration_and_capability & (u32)HPETFlags::TimerConfiguration::PeriodicInterruptCapable;
}
void HPET::set_comparators_to_optimal_interrupt_state(size_t)
{
// FIXME: Implement this method for allowing to use HPET timers 2-31...
ASSERT_NOT_REACHED();
}
PhysicalAddress HPET::find_acpi_hpet_registers_block()
{
auto sdt = map_typed<const volatile ACPI::Structures::HPET>(m_physical_acpi_hpet_table);
ASSERT(sdt->event_timer_block.address_space == (u8)ACPI::GenericAddressStructure::AddressSpace::SystemMemory);
return PhysicalAddress(sdt->event_timer_block.address);
}
const volatile HPETRegistersBlock& HPET::registers() const
{
return *(const volatile HPETRegistersBlock*)m_hpet_mmio_region->vaddr().offset(m_physical_acpi_hpet_registers.offset_in_page()).as_ptr();
}
volatile HPETRegistersBlock& HPET::registers()
{
return *(volatile HPETRegistersBlock*)m_hpet_mmio_region->vaddr().offset(m_physical_acpi_hpet_registers.offset_in_page()).as_ptr();
}
u64 HPET::calculate_ticks_in_nanoseconds() const
{
return ABSOLUTE_MAXIMUM_COUNTER_TICK_PERIOD / registers().capabilities.main_counter_tick_period;
}
HPET::HPET(PhysicalAddress acpi_hpet)
: m_physical_acpi_hpet_table(acpi_hpet)
, m_physical_acpi_hpet_registers(find_acpi_hpet_registers_block())
, m_hpet_mmio_region(MM.allocate_kernel_region(m_physical_acpi_hpet_registers.page_base(), PAGE_SIZE, "HPET MMIO", Region::Access::Read | Region::Access::Write))
{
auto sdt = map_typed<const volatile ACPI::Structures::HPET>(m_physical_acpi_hpet_table);
m_vendor_id = sdt->pci_vendor_id;
m_minimum_tick = sdt->mininum_clock_tick;
klog() << "HPET: Minimum clock tick - " << m_minimum_tick;
// Note: We must do a 32 bit access to offsets 0x0, or 0x4 only.
size_t timers_count = ((registers().raw_capabilites.reg >> 8) & 0x1f) + 1;
klog() << "HPET: Timers count - " << timers_count;
ASSERT(timers_count >= 2);
auto* capabilities_register = (const volatile HPETCapabilityRegister*)®isters().raw_capabilites.reg;
global_disable();
m_frequency = NANOSECOND_PERIOD_TO_HERTZ(calculate_ticks_in_nanoseconds());
klog() << "HPET: frequency " << m_frequency << " Hz (" << MEGAHERTZ_TO_HERTZ(m_frequency) << " MHz)";
ASSERT(capabilities_register->main_counter_tick_period <= ABSOLUTE_MAXIMUM_COUNTER_TICK_PERIOD);
// Reset the counter, just in case...
registers().main_counter_value.reg = 0;
if (registers().raw_capabilites.reg & (u32)HPETFlags::Attributes::LegacyReplacementRouteCapable)
registers().configuration.reg = registers().configuration.reg | (u32)HPETFlags::Configuration::LegacyReplacementRoute;
m_comparators.append(HPETComparator::create(0, 0, is_periodic_capable(0)));
m_comparators.append(HPETComparator::create(1, 8, is_periodic_capable(1)));
global_enable();
}
}
|