1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
/*
* Copyright (c) 2020, the SerenityOS developers
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/IO.h>
#include <Kernel/Interrupts/APIC.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Thread.h>
#include <Kernel/Time/APICTimer.h>
#include <Kernel/Time/TimeManagement.h>
namespace Kernel {
#define APIC_TIMER_MEASURE_CPU_CLOCK
APICTimer* APICTimer::initialize(u8 interrupt_number, HardwareTimerBase& calibration_source)
{
auto* timer = new APICTimer(interrupt_number, nullptr);
if (!timer->calibrate(calibration_source)) {
delete timer;
return nullptr;
}
return timer;
}
APICTimer::APICTimer(u8 interrupt_number, Function<void(const RegisterState&)> callback)
: HardwareTimer<GenericInterruptHandler>(interrupt_number, move(callback))
{
disable_remap();
}
bool APICTimer::calibrate(HardwareTimerBase& calibration_source)
{
ASSERT_INTERRUPTS_DISABLED();
klog() << "APICTimer: Using " << calibration_source.model() << " as calibration source";
auto& apic = APIC::the();
#ifdef APIC_TIMER_MEASURE_CPU_CLOCK
bool supports_tsc = Processor::current().has_feature(CPUFeature::TSC);
#endif
// temporarily replace the timer callbacks
const size_t ticks_in_100ms = calibration_source.ticks_per_second() / 10;
Atomic<size_t> calibration_ticks = 0;
#ifdef APIC_TIMER_MEASURE_CPU_CLOCK
volatile u64 start_tsc = 0, end_tsc = 0;
#endif
volatile u32 start_apic_count = 0, end_apic_count = 0;
auto original_source_callback = calibration_source.set_callback([&](const RegisterState&) {
u32 current_timer_count = apic.get_timer_current_count();
#ifdef APIC_TIMER_MEASURE_CPU_CLOCK
u64 current_tsc = supports_tsc ? read_tsc() : 0;
#endif
auto prev_tick = calibration_ticks.fetch_add(1, AK::memory_order_acq_rel);
if (prev_tick == 0) {
#ifdef APIC_TIMER_MEASURE_CPU_CLOCK
start_tsc = current_tsc;
#endif
start_apic_count = current_timer_count;
} else if (prev_tick + 1 == ticks_in_100ms) {
#ifdef APIC_TIMER_MEASURE_CPU_CLOCK
end_tsc = current_tsc;
#endif
end_apic_count = current_timer_count;
}
});
// Setup a counter that should be much longer than our calibration time.
// We don't want the APIC timer to actually fire. We do however want the
// calbibration_source timer to fire so that we can read the current
// tick count from the APIC timer
auto original_callback = set_callback([&](const RegisterState&) {
klog() << "APICTimer: Timer fired during calibration!";
ASSERT_NOT_REACHED(); // TODO: How should we handle this?
});
apic.setup_local_timer(0xffffffff, APIC::TimerMode::Periodic, true);
sti();
// Loop for about 100 ms
while (calibration_ticks.load(AK::memory_order_relaxed) < ticks_in_100ms)
;
cli();
// Restore timer callbacks
calibration_source.set_callback(move(original_source_callback));
set_callback(move(original_callback));
disable_local_timer();
auto delta_apic_count = start_apic_count - end_apic_count; // The APIC current count register decrements!
m_timer_period = (delta_apic_count * apic.get_timer_divisor()) / ticks_in_100ms;
auto apic_freq = (delta_apic_count * apic.get_timer_divisor()) / apic.get_timer_divisor();
if (apic_freq < 1000000) {
klog() << "APICTimer: Frequency too slow!";
return false;
}
klog() << "APICTimer: Bus clock speed: " << (apic_freq / 1000000) << "." << (apic_freq % 1000000) << " MHz";
#ifdef APIC_TIMER_MEASURE_CPU_CLOCK
if (supports_tsc) {
auto delta_tsc = end_tsc - start_tsc;
klog() << "APICTimer: CPU clock speed: " << (delta_tsc / 1000000) << "." << (delta_tsc % 1000000) << " MHz";
}
#endif
// TODO: measure rather than assuming it matches?
m_frequency = calibration_source.ticks_per_second();
enable_local_timer();
return true;
}
void APICTimer::enable_local_timer()
{
APIC::the().setup_local_timer(m_timer_period, m_timer_mode, true);
}
void APICTimer::disable_local_timer()
{
APIC::the().setup_local_timer(0, APIC::TimerMode::OneShot, false);
}
size_t APICTimer::ticks_per_second() const
{
return m_frequency;
}
void APICTimer::set_periodic()
{
// FIXME: Implement it...
ASSERT_NOT_REACHED();
}
void APICTimer::set_non_periodic()
{
// FIXME: Implement it...
ASSERT_NOT_REACHED();
}
void APICTimer::reset_to_default_ticks_per_second()
{
}
bool APICTimer::try_to_set_frequency([[maybe_unused]] size_t frequency)
{
return true;
}
bool APICTimer::is_capable_of_frequency([[maybe_unused]] size_t frequency) const
{
return false;
}
size_t APICTimer::calculate_nearest_possible_frequency([[maybe_unused]] size_t frequency) const
{
return 0;
}
}
|