summaryrefslogtreecommitdiff
path: root/Kernel/Thread.cpp
blob: 59aaf8c07b96b21ce0fad6a0b86f510d0f7fa7c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
#include <AK/ELF/ELFLoader.h>
#include <AK/StringBuilder.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/Process.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Thread.h>
#include <Kernel/VM/MemoryManager.h>
#include <LibC/signal_numbers.h>

//#define SIGNAL_DEBUG

u16 thread_specific_selector()
{
    static u16 selector;
    if (!selector) {
        selector = gdt_alloc_entry();
        auto& descriptor = get_gdt_entry(selector);
        descriptor.dpl = 3;
        descriptor.segment_present = 1;
        descriptor.granularity = 0;
        descriptor.zero = 0;
        descriptor.operation_size = 1;
        descriptor.descriptor_type = 1;
        descriptor.type = 2;
    }
    return selector;
}

Descriptor& thread_specific_descriptor()
{
    return get_gdt_entry(thread_specific_selector());
}

HashTable<Thread*>& thread_table()
{
    ASSERT_INTERRUPTS_DISABLED();
    static HashTable<Thread*>* table;
    if (!table)
        table = new HashTable<Thread*>;
    return *table;
}

Thread::Thread(Process& process)
    : m_process(process)
    , m_tid(process.m_next_tid++)
{
    dbgprintf("Thread{%p}: New thread TID=%u in %s(%u)\n", this, m_tid, process.name().characters(), process.pid());
    set_default_signal_dispositions();
    m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
    memset(m_fpu_state, 0, sizeof(FPUState));
    memset(&m_tss, 0, sizeof(m_tss));

    // Only IF is set when a process boots.
    m_tss.eflags = 0x0202;
    u16 cs, ds, ss, gs;

    if (m_process.is_ring0()) {
        cs = 0x08;
        ds = 0x10;
        ss = 0x10;
        gs = 0;
    } else {
        cs = 0x1b;
        ds = 0x23;
        ss = 0x23;
        gs = thread_specific_selector() | 3;
    }

    m_tss.ds = ds;
    m_tss.es = ds;
    m_tss.fs = ds;
    m_tss.gs = gs;
    m_tss.ss = ss;
    m_tss.cs = cs;

    m_tss.cr3 = m_process.page_directory().cr3();

    if (m_process.is_ring0()) {
        // FIXME: This memory is leaked.
        // But uh, there's also no kernel process termination, so I guess it's not technically leaked...
        m_kernel_stack_base = (u32)kmalloc_eternal(default_kernel_stack_size);
        m_kernel_stack_top = (m_kernel_stack_base + default_kernel_stack_size) & 0xfffffff8u;
        m_tss.esp = m_kernel_stack_top;

    } else {
        // Ring3 processes need a separate stack for Ring0.
        m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid));
        m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
        m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
        m_tss.ss0 = 0x10;
        m_tss.esp0 = m_kernel_stack_top;
    }

    // HACK: Ring2 SS in the TSS is the current PID.
    m_tss.ss2 = m_process.pid();
    m_far_ptr.offset = 0x98765432;

    if (m_process.pid() != 0) {
        InterruptDisabler disabler;
        thread_table().set(this);
        Scheduler::init_thread(*this);
    }
}

Thread::~Thread()
{
    dbgprintf("~Thread{%p}\n", this);
    kfree_aligned(m_fpu_state);
    {
        InterruptDisabler disabler;
        thread_table().remove(this);
    }

    if (g_last_fpu_thread == this)
        g_last_fpu_thread = nullptr;

    if (selector())
        gdt_free_entry(selector());

    if (m_userspace_stack_region)
        m_process.deallocate_region(*m_userspace_stack_region);
}

void Thread::unblock()
{
    if (current == this) {
        set_state(Thread::Running);
        return;
    }
    ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
    set_state(Thread::Runnable);
}

void Thread::block_helper()
{
    // This function mostly exists to avoid circular header dependencies. If
    // anything needs adding, think carefully about whether it belongs in
    // block() instead. Remember that we're unlocking here, so be very careful
    // about altering any state once we're unlocked!
    bool did_unlock = process().big_lock().unlock_if_locked();
    Scheduler::yield();
    if (did_unlock)
        process().big_lock().lock();
}

u64 Thread::sleep(u32 ticks)
{
    ASSERT(state() == Thread::Running);
    u64 wakeup_time = g_uptime + ticks;
    auto ret = current->block<Thread::SleepBlocker>(wakeup_time);
    if (wakeup_time > g_uptime) {
        ASSERT(ret == Thread::BlockResult::InterruptedBySignal);
    }
    return wakeup_time;
}

u64 Thread::sleep_until(u64 wakeup_time)
{
    ASSERT(state() == Thread::Running);
    auto ret = current->block<Thread::SleepBlocker>(wakeup_time);
    if (wakeup_time > g_uptime)
        ASSERT(ret == Thread::BlockResult::InterruptedBySignal);
    return wakeup_time;
}

const char* Thread::state_string() const
{
    switch (state()) {
    case Thread::Invalid:
        return "Invalid";
    case Thread::Runnable:
        return "Runnable";
    case Thread::Running:
        return "Running";
    case Thread::Dying:
        return "Dying";
    case Thread::Dead:
        return "Dead";
    case Thread::Stopped:
        return "Stopped";
    case Thread::Skip1SchedulerPass:
        return "Skip1";
    case Thread::Skip0SchedulerPasses:
        return "Skip0";
    case Thread::Blocked:
        ASSERT(m_blocker != nullptr);
        return m_blocker->state_string();
    }
    kprintf("Thread::state_string(): Invalid state: %u\n", state());
    ASSERT_NOT_REACHED();
    return nullptr;
}

void Thread::finalize()
{
    ASSERT(current == g_finalizer);

    dbgprintf("Finalizing Thread %u in %s(%u)\n", tid(), m_process.name().characters(), pid());
    set_state(Thread::State::Dead);

    if (m_dump_backtrace_on_finalization)
        dbg() << backtrace_impl();

    if (this == &m_process.main_thread()) {
        m_process.finalize();
        return;
    }

    delete this;
}

void Thread::finalize_dying_threads()
{
    ASSERT(current == g_finalizer);
    Vector<Thread*, 32> dying_threads;
    {
        InterruptDisabler disabler;
        for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
            dying_threads.append(&thread);
            return IterationDecision::Continue;
        });
    }
    for (auto* thread : dying_threads)
        thread->finalize();
}

bool Thread::tick()
{
    ++m_ticks;
    if (tss().cs & 3)
        ++m_process.m_ticks_in_user;
    else
        ++m_process.m_ticks_in_kernel;
    return --m_ticks_left;
}

void Thread::send_signal(u8 signal, Process* sender)
{
    ASSERT(signal < 32);
    InterruptDisabler disabler;

    // FIXME: Figure out what to do for masked signals. Should we also ignore them here?
    if (should_ignore_signal(signal)) {
        dbg() << "signal " << signal << " was ignored by " << process();
        return;
    }

    if (sender)
        dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, process().name().characters(), pid());
    else
        dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, process().name().characters(), pid());

    m_pending_signals |= 1 << (signal - 1);
}

// Certain exceptions, such as SIGSEGV and SIGILL, put a
// thread into a state where the signal handler must be
// invoked immediately, otherwise it will continue to fault.
// This function should be used in an exception handler to
// ensure that when the thread resumes, it's executing in
// the appropriate signal handler.
void Thread::send_urgent_signal_to_self(u8 signal)
{
    // FIXME: because of a bug in dispatch_signal we can't
    // setup a signal while we are the current thread. Because of
    // this we use a work-around where we send the signal and then
    // block, allowing the scheduler to properly dispatch the signal
    // before the thread is next run.
    send_signal(signal, &process());
    (void)block<SemiPermanentBlocker>(SemiPermanentBlocker::Reason::Signal);
}

bool Thread::has_unmasked_pending_signals() const
{
    return m_pending_signals & ~m_signal_mask;
}

ShouldUnblockThread Thread::dispatch_one_pending_signal()
{
    ASSERT_INTERRUPTS_DISABLED();
    u32 signal_candidates = m_pending_signals & ~m_signal_mask;
    ASSERT(signal_candidates);

    u8 signal = 1;
    for (; signal < 32; ++signal) {
        if (signal_candidates & (1 << (signal - 1))) {
            break;
        }
    }
    return dispatch_signal(signal);
}

enum class DefaultSignalAction {
    Terminate,
    Ignore,
    DumpCore,
    Stop,
    Continue,
};

DefaultSignalAction default_signal_action(u8 signal)
{
    ASSERT(signal && signal < NSIG);

    switch (signal) {
    case SIGHUP:
    case SIGINT:
    case SIGKILL:
    case SIGPIPE:
    case SIGALRM:
    case SIGUSR1:
    case SIGUSR2:
    case SIGVTALRM:
    case SIGSTKFLT:
    case SIGIO:
    case SIGPROF:
    case SIGTERM:
    case SIGPWR:
        return DefaultSignalAction::Terminate;
    case SIGCHLD:
    case SIGURG:
    case SIGWINCH:
        return DefaultSignalAction::Ignore;
    case SIGQUIT:
    case SIGILL:
    case SIGTRAP:
    case SIGABRT:
    case SIGBUS:
    case SIGFPE:
    case SIGSEGV:
    case SIGXCPU:
    case SIGXFSZ:
    case SIGSYS:
        return DefaultSignalAction::DumpCore;
    case SIGCONT:
        return DefaultSignalAction::Continue;
    case SIGSTOP:
    case SIGTSTP:
    case SIGTTIN:
    case SIGTTOU:
        return DefaultSignalAction::Stop;
    }
    ASSERT_NOT_REACHED();
}

bool Thread::should_ignore_signal(u8 signal) const
{
    ASSERT(signal < 32);
    auto& action = m_signal_action_data[signal];
    if (action.handler_or_sigaction.is_null())
        return default_signal_action(signal) == DefaultSignalAction::Ignore;
    if (action.handler_or_sigaction.as_ptr() == SIG_IGN)
        return true;
    return false;
}

bool Thread::has_signal_handler(u8 signal) const
{
    ASSERT(signal < 32);
    auto& action = m_signal_action_data[signal];
    return !action.handler_or_sigaction.is_null();
}

static void push_value_on_user_stack(u32* stack, u32 data)
{
    *stack -= 4;
    *(u32*)*stack = data;
}

ShouldUnblockThread Thread::dispatch_signal(u8 signal)
{
    ASSERT_INTERRUPTS_DISABLED();
    ASSERT(signal > 0 && signal <= 32);
    ASSERT(!process().is_ring0());

#ifdef SIGNAL_DEBUG
    kprintf("dispatch_signal %s(%u) <- %u\n", process().name().characters(), pid(), signal);
#endif

    auto& action = m_signal_action_data[signal];
    // FIXME: Implement SA_SIGINFO signal handlers.
    ASSERT(!(action.flags & SA_SIGINFO));

    // Mark this signal as handled.
    m_pending_signals &= ~(1 << (signal - 1));

    if (signal == SIGSTOP) {
        set_state(Stopped);
        return ShouldUnblockThread::No;
    }

    if (signal == SIGCONT && state() == Stopped)
        set_state(Runnable);

    auto handler_vaddr = action.handler_or_sigaction;
    if (handler_vaddr.is_null()) {
        switch (default_signal_action(signal)) {
        case DefaultSignalAction::Stop:
            set_state(Stopped);
            return ShouldUnblockThread::No;
        case DefaultSignalAction::DumpCore:
            process().for_each_thread([](auto& thread) {
                thread.set_dump_backtrace_on_finalization();
                return IterationDecision::Continue;
            });
            [[fallthrough]];
        case DefaultSignalAction::Terminate:
            m_process.terminate_due_to_signal(signal);
            return ShouldUnblockThread::No;
        case DefaultSignalAction::Ignore:
            ASSERT_NOT_REACHED();
        case DefaultSignalAction::Continue:
            return ShouldUnblockThread::Yes;
        }
        ASSERT_NOT_REACHED();
    }

    if (handler_vaddr.as_ptr() == SIG_IGN) {
#ifdef SIGNAL_DEBUG
        kprintf("%s(%u) ignored signal %u\n", process().name().characters(), pid(), signal);
#endif
        return ShouldUnblockThread::Yes;
    }

    ProcessPagingScope paging_scope(m_process);

    u32 old_signal_mask = m_signal_mask;
    u32 new_signal_mask = action.mask;
    if (action.flags & SA_NODEFER)
        new_signal_mask &= ~(1 << (signal - 1));
    else
        new_signal_mask |= 1 << (signal - 1);

    m_signal_mask |= new_signal_mask;

    auto setup_stack = [&]<typename ThreadState>(ThreadState state, u32 * stack)
    {
        u32 old_esp = *stack;
        u32 ret_eip = state.eip;
        u32 ret_eflags = state.eflags;

        // Align the stack to 16 bytes.
        // Note that we push 56 bytes (4 * 14) on to the stack,
        // so we need to account for this here.
        u32 stack_alignment = (*stack - 56) % 16;
        *stack -= stack_alignment;

        push_value_on_user_stack(stack, ret_eflags);

        push_value_on_user_stack(stack, ret_eip);
        push_value_on_user_stack(stack, state.eax);
        push_value_on_user_stack(stack, state.ecx);
        push_value_on_user_stack(stack, state.edx);
        push_value_on_user_stack(stack, state.ebx);
        push_value_on_user_stack(stack, old_esp);
        push_value_on_user_stack(stack, state.ebp);
        push_value_on_user_stack(stack, state.esi);
        push_value_on_user_stack(stack, state.edi);

        // PUSH old_signal_mask
        push_value_on_user_stack(stack, old_signal_mask);

        push_value_on_user_stack(stack, signal);
        push_value_on_user_stack(stack, handler_vaddr.get());
        push_value_on_user_stack(stack, 0); //push fake return address

        ASSERT((*stack % 16) == 0);
    };

    // We now place the thread state on the userspace stack.
    // Note that when we are in the kernel (ie. blocking) we cannot use the
    // tss, as that will contain kernel state; instead, we use a RegisterDump.
    // Conversely, when the thread isn't blocking the RegisterDump may not be
    // valid (fork, exec etc) but the tss will, so we use that instead.
    if (!in_kernel()) {
        u32* stack = &m_tss.esp;
        setup_stack(m_tss, stack);

        Scheduler::prepare_to_modify_tss(*this);
        m_tss.cs = 0x1b;
        m_tss.ds = 0x23;
        m_tss.es = 0x23;
        m_tss.fs = 0x23;
        m_tss.gs = thread_specific_selector() | 3;
        m_tss.eip = g_return_to_ring3_from_signal_trampoline.get();
        // FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
        set_state(Skip1SchedulerPass);
    } else {
        auto& regs = get_RegisterDump_from_stack();
        u32* stack = &regs.esp_if_crossRing;
        setup_stack(regs, stack);
        regs.eip = g_return_to_ring3_from_signal_trampoline.get();
    }

#ifdef SIGNAL_DEBUG
    kprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", process().name().characters(), pid(), state_string(), m_tss.cs, m_tss.eip);
#endif
    return ShouldUnblockThread::Yes;
}

void Thread::set_default_signal_dispositions()
{
    // FIXME: Set up all the right default actions. See signal(7).
    memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
    m_signal_action_data[SIGCHLD].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
    m_signal_action_data[SIGWINCH].handler_or_sigaction = VirtualAddress((u32)SIG_IGN);
}

void Thread::push_value_on_stack(u32 value)
{
    m_tss.esp -= 4;
    u32* stack_ptr = (u32*)m_tss.esp;
    *stack_ptr = value;
}

RegisterDump& Thread::get_RegisterDump_from_stack()
{
    // The userspace registers should be stored at the top of the stack
    // We have to subtract 2 because the processor decrements the kernel
    // stack before pushing the args.
    return *(RegisterDump*)(kernel_stack_top() - sizeof(RegisterDump) - 2);
}

void Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment)
{
    auto* region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, "Stack (Main thread)", PROT_READ | PROT_WRITE, false);
    ASSERT(region);
    m_tss.esp = region->vaddr().offset(default_userspace_stack_size).get();

    char* stack_base = (char*)region->vaddr().get();
    int argc = arguments.size();
    char** argv = (char**)stack_base;
    char** env = argv + arguments.size() + 1;
    char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));

    for (int i = 0; i < arguments.size(); ++i) {
        argv[i] = bufptr;
        memcpy(bufptr, arguments[i].characters(), arguments[i].length());
        bufptr += arguments[i].length();
        *(bufptr++) = '\0';
    }
    argv[arguments.size()] = nullptr;

    for (int i = 0; i < environment.size(); ++i) {
        env[i] = bufptr;
        memcpy(bufptr, environment[i].characters(), environment[i].length());
        bufptr += environment[i].length();
        *(bufptr++) = '\0';
    }
    env[environment.size()] = nullptr;

    // NOTE: The stack needs to be 16-byte aligned.
    push_value_on_stack((u32)env);
    push_value_on_stack((u32)argv);
    push_value_on_stack((u32)argc);
    push_value_on_stack(0);
}

void Thread::make_userspace_stack_for_secondary_thread(void* argument)
{
    m_userspace_stack_region = m_process.allocate_region(VirtualAddress(), default_userspace_stack_size, String::format("Stack (Thread %d)", tid()), PROT_READ | PROT_WRITE, false);
    ASSERT(m_userspace_stack_region);
    m_tss.esp = m_userspace_stack_region->vaddr().offset(default_userspace_stack_size).get();

    // NOTE: The stack needs to be 16-byte aligned.
    push_value_on_stack((u32)argument);
    push_value_on_stack(0);
}

Thread* Thread::clone(Process& process)
{
    auto* clone = new Thread(process);
    memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
    clone->m_signal_mask = m_signal_mask;
    memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
    clone->m_has_used_fpu = m_has_used_fpu;
    clone->m_thread_specific_data = m_thread_specific_data;
    return clone;
}

void Thread::initialize()
{
    Scheduler::initialize();
}

Vector<Thread*> Thread::all_threads()
{
    Vector<Thread*> threads;
    InterruptDisabler disabler;
    threads.ensure_capacity(thread_table().size());
    for (auto* thread : thread_table())
        threads.unchecked_append(thread);
    return threads;
}

bool Thread::is_thread(void* ptr)
{
    ASSERT_INTERRUPTS_DISABLED();
    return thread_table().contains((Thread*)ptr);
}

void Thread::set_state(State new_state)
{
    InterruptDisabler disabler;
    if (new_state == Blocked) {
        // we should always have a Blocker while blocked
        ASSERT(m_blocker != nullptr);
    }

    m_state = new_state;
    if (m_process.pid() != 0) {
        Scheduler::update_state_for_thread(*this);
    }
}

String Thread::backtrace(ProcessInspectionHandle&) const
{
    return backtrace_impl();
}

String Thread::backtrace_impl() const
{
    auto& process = const_cast<Process&>(this->process());
    ProcessPagingScope paging_scope(process);
    struct RecognizedSymbol {
        u32 address;
        const KSym* ksym;
    };
    StringBuilder builder;
    Vector<RecognizedSymbol, 64> recognized_symbols;
    recognized_symbols.append({ tss().eip, ksymbolicate(tss().eip) });
    for (u32* stack_ptr = (u32*)frame_ptr(); process.validate_read_from_kernel(VirtualAddress((u32)stack_ptr)); stack_ptr = (u32*)*stack_ptr) {
        u32 retaddr = stack_ptr[1];
        recognized_symbols.append({ retaddr, ksymbolicate(retaddr) });
    }

    for (auto& symbol : recognized_symbols) {
        if (!symbol.address)
            break;
        if (!symbol.ksym) {
            if (!Scheduler::is_active() && process.elf_loader() && process.elf_loader()->has_symbols())
                builder.appendf("%p  %s\n", symbol.address, process.elf_loader()->symbolicate(symbol.address).characters());
            else
                builder.appendf("%p\n", symbol.address);
            continue;
        }
        unsigned offset = symbol.address - symbol.ksym->address;
        if (symbol.ksym->address == ksym_highest_address && offset > 4096)
            builder.appendf("%p\n", symbol.address);
        else
            builder.appendf("%p  %s +%u\n", symbol.address, symbol.ksym->name, offset);
    }
    return builder.to_string();
}

void Thread::make_thread_specific_region(Badge<Process>)
{
    size_t thread_specific_region_alignment = max(process().m_master_tls_alignment, alignof(ThreadSpecificData));
    size_t thread_specific_region_size = align_up_to(process().m_master_tls_size, thread_specific_region_alignment) + sizeof(ThreadSpecificData);
    auto* region = process().allocate_region({}, thread_specific_region_size, "Thread-specific", PROT_READ | PROT_WRITE, true);
    auto* thread_specific_data = (ThreadSpecificData*)region->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment)).as_ptr();
    auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment);
    m_thread_specific_data = VirtualAddress((u32)thread_specific_data);
    thread_specific_data->self = thread_specific_data;
    if (process().m_master_tls_size)
        memcpy(thread_local_storage, process().m_master_tls_region->vaddr().as_ptr(), process().m_master_tls_size);
}

const LogStream& operator<<(const LogStream& stream, const Thread& value)
{
    return stream << value.process().name() << "(" << value.pid() << ":" << value.tid() << ")";
}