1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
|
/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/ScopeGuard.h>
#include <AK/Singleton.h>
#include <AK/StringBuilder.h>
#include <AK/Time.h>
#include <Kernel/Arch/SmapDisabler.h>
#include <Kernel/Arch/x86/InterruptDisabler.h>
#include <Kernel/Arch/x86/TrapFrame.h>
#include <Kernel/Debug.h>
#include <Kernel/Devices/KCOVDevice.h>
#include <Kernel/FileSystem/OpenFileDescription.h>
#include <Kernel/KSyms.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/PageDirectory.h>
#include <Kernel/Memory/ScopedAddressSpaceSwitcher.h>
#include <Kernel/Panic.h>
#include <Kernel/PerformanceEventBuffer.h>
#include <Kernel/Process.h>
#include <Kernel/ProcessExposed.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Sections.h>
#include <Kernel/Thread.h>
#include <Kernel/ThreadTracer.h>
#include <Kernel/TimerQueue.h>
#include <LibC/signal_numbers.h>
namespace Kernel {
static Singleton<SpinlockProtected<Thread::GlobalList>> s_list;
SpinlockProtected<Thread::GlobalList>& Thread::all_instances()
{
return *s_list;
}
ErrorOr<NonnullRefPtr<Thread>> Thread::try_create(NonnullRefPtr<Process> process)
{
auto kernel_stack_region = TRY(MM.allocate_kernel_region(default_kernel_stack_size, {}, Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow));
kernel_stack_region->set_stack(true);
auto block_timer = try_make_ref_counted<Timer>();
if (!block_timer)
return ENOMEM;
auto name = TRY(KString::try_create(process->name()));
return adopt_nonnull_ref_or_enomem(new (nothrow) Thread(move(process), move(kernel_stack_region), block_timer.release_nonnull(), move(name)));
}
Thread::Thread(NonnullRefPtr<Process> process, NonnullOwnPtr<Memory::Region> kernel_stack_region, NonnullRefPtr<Timer> block_timer, NonnullOwnPtr<KString> name)
: m_process(move(process))
, m_kernel_stack_region(move(kernel_stack_region))
, m_name(move(name))
, m_block_timer(move(block_timer))
{
bool is_first_thread = m_process->add_thread(*this);
if (is_first_thread) {
// First thread gets TID == PID
m_tid = m_process->pid().value();
} else {
m_tid = Process::allocate_pid().value();
}
// FIXME: Handle KString allocation failure.
m_kernel_stack_region->set_name(MUST(KString::formatted("Kernel stack (thread {})", m_tid.value())));
Thread::all_instances().with([&](auto& list) {
list.append(*this);
});
if constexpr (THREAD_DEBUG)
dbgln("Created new thread {}({}:{})", m_process->name(), m_process->pid().value(), m_tid.value());
reset_fpu_state();
// Only IF is set when a process boots.
m_regs.set_flags(0x0202);
#if ARCH(I386)
if (m_process->is_kernel_process()) {
m_regs.cs = GDT_SELECTOR_CODE0;
m_regs.ds = GDT_SELECTOR_DATA0;
m_regs.es = GDT_SELECTOR_DATA0;
m_regs.fs = 0;
m_regs.ss = GDT_SELECTOR_DATA0;
m_regs.gs = GDT_SELECTOR_PROC;
} else {
m_regs.cs = GDT_SELECTOR_CODE3 | 3;
m_regs.ds = GDT_SELECTOR_DATA3 | 3;
m_regs.es = GDT_SELECTOR_DATA3 | 3;
m_regs.fs = GDT_SELECTOR_DATA3 | 3;
m_regs.ss = GDT_SELECTOR_DATA3 | 3;
m_regs.gs = GDT_SELECTOR_TLS | 3;
}
#else
if (m_process->is_kernel_process())
m_regs.cs = GDT_SELECTOR_CODE0;
else
m_regs.cs = GDT_SELECTOR_CODE3 | 3;
#endif
m_regs.cr3 = m_process->address_space().page_directory().cr3();
m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & ~(FlatPtr)0x7u;
if (m_process->is_kernel_process()) {
m_regs.set_sp(m_kernel_stack_top);
m_regs.set_sp0(m_kernel_stack_top);
} else {
// Ring 3 processes get a separate stack for ring 0.
// The ring 3 stack will be assigned by exec().
#if ARCH(I386)
m_regs.ss0 = GDT_SELECTOR_DATA0;
#endif
m_regs.set_sp0(m_kernel_stack_top);
}
// We need to add another reference if we could successfully create
// all the resources needed for this thread. The reason for this is that
// we don't want to delete this thread after dropping the reference,
// it may still be running or scheduled to be run.
// The finalizer is responsible for dropping this reference once this
// thread is ready to be cleaned up.
ref();
}
Thread::~Thread()
{
{
// We need to explicitly remove ourselves from the thread list
// here. We may get preempted in the middle of destructing this
// thread, which causes problems if the thread list is iterated.
// Specifically, if this is the last thread of a process, checking
// block conditions would access m_process, which would be in
// the middle of being destroyed.
SpinlockLocker lock(g_scheduler_lock);
VERIFY(!m_process_thread_list_node.is_in_list());
// We shouldn't be queued
VERIFY(m_runnable_priority < 0);
}
}
void Thread::block(Kernel::Mutex& lock, SpinlockLocker<Spinlock>& lock_lock, u32 lock_count)
{
VERIFY(!Processor::current_in_irq());
VERIFY(this == Thread::current());
ScopedCritical critical;
VERIFY(!Memory::s_mm_lock.is_locked_by_current_processor());
SpinlockLocker block_lock(m_block_lock);
SpinlockLocker scheduler_lock(g_scheduler_lock);
switch (state()) {
case Thread::Stopped:
// It's possible that we were requested to be stopped!
break;
case Thread::Running:
VERIFY(m_blocker == nullptr);
break;
default:
VERIFY_NOT_REACHED();
}
// If we're blocking on the big-lock we may actually be in the process
// of unblocking from another lock. If that's the case m_blocking_lock
// is already set
auto& big_lock = process().big_lock();
VERIFY((&lock == &big_lock && m_blocking_lock != &big_lock) || !m_blocking_lock);
auto* previous_blocking_lock = m_blocking_lock;
m_blocking_lock = &lock;
m_lock_requested_count = lock_count;
set_state(Thread::Blocked);
scheduler_lock.unlock();
block_lock.unlock();
lock_lock.unlock();
dbgln_if(THREAD_DEBUG, "Thread {} blocking on Mutex {}", *this, &lock);
for (;;) {
// Yield to the scheduler, and wait for us to resume unblocked.
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
VERIFY(Processor::in_critical());
if (&lock != &big_lock && big_lock.is_locked_by_current_thread()) {
// We're locking another lock and already hold the big lock...
// We need to release the big lock
yield_and_release_relock_big_lock();
} else {
// By the time we've reached this another thread might have
// marked us as holding the big lock, so this call must not
// verify that we're not holding it.
yield_without_releasing_big_lock(VerifyLockNotHeld::No);
}
VERIFY(Processor::in_critical());
SpinlockLocker block_lock2(m_block_lock);
VERIFY(!m_blocking_lock);
m_blocking_lock = previous_blocking_lock;
break;
}
lock_lock.lock();
}
u32 Thread::unblock_from_lock(Kernel::Mutex& lock)
{
SpinlockLocker block_lock(m_block_lock);
VERIFY(m_blocking_lock == &lock);
auto requested_count = m_lock_requested_count;
block_lock.unlock();
auto do_unblock = [&]() {
SpinlockLocker scheduler_lock(g_scheduler_lock);
SpinlockLocker block_lock(m_block_lock);
VERIFY(m_blocking_lock == &lock);
VERIFY(!Processor::current_in_irq());
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
VERIFY(m_block_lock.is_locked_by_current_processor());
VERIFY(m_blocking_lock == &lock);
dbgln_if(THREAD_DEBUG, "Thread {} unblocked from Mutex {}", *this, &lock);
m_blocking_lock = nullptr;
if (Thread::current() == this) {
set_state(Thread::Running);
return;
}
VERIFY(m_state != Thread::Runnable && m_state != Thread::Running);
set_state(Thread::Runnable);
};
if (Processor::current_in_irq() != 0) {
Processor::deferred_call_queue([do_unblock = move(do_unblock), self = make_weak_ptr()]() {
if (auto this_thread = self.strong_ref())
do_unblock();
});
} else {
do_unblock();
}
return requested_count;
}
void Thread::unblock_from_blocker(Blocker& blocker)
{
auto do_unblock = [&]() {
SpinlockLocker scheduler_lock(g_scheduler_lock);
SpinlockLocker block_lock(m_block_lock);
if (m_blocker != &blocker)
return;
if (!should_be_stopped() && !is_stopped())
unblock();
};
if (Processor::current_in_irq() != 0) {
Processor::deferred_call_queue([do_unblock = move(do_unblock), self = make_weak_ptr()]() {
if (auto this_thread = self.strong_ref())
do_unblock();
});
} else {
do_unblock();
}
}
void Thread::unblock(u8 signal)
{
VERIFY(!Processor::current_in_irq());
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
VERIFY(m_block_lock.is_locked_by_current_processor());
if (m_state != Thread::Blocked)
return;
if (m_blocking_lock)
return;
VERIFY(m_blocker);
if (signal != 0) {
if (is_handling_page_fault()) {
// Don't let signals unblock threads that are blocked inside a page fault handler.
// This prevents threads from EINTR'ing the inode read in an inode page fault.
// FIXME: There's probably a better way to solve this.
return;
}
if (!m_blocker->can_be_interrupted() && !m_should_die)
return;
m_blocker->set_interrupted_by_signal(signal);
}
m_blocker = nullptr;
if (Thread::current() == this) {
set_state(Thread::Running);
return;
}
VERIFY(m_state != Thread::Runnable && m_state != Thread::Running);
set_state(Thread::Runnable);
}
void Thread::set_should_die()
{
if (m_should_die) {
dbgln("{} Should already die", *this);
return;
}
ScopedCritical critical;
// Remember that we should die instead of returning to
// the userspace.
SpinlockLocker lock(g_scheduler_lock);
m_should_die = true;
// NOTE: Even the current thread can technically be in "Stopped"
// state! This is the case when another thread sent a SIGSTOP to
// it while it was running and it calls e.g. exit() before
// the scheduler gets involved again.
if (is_stopped()) {
// If we were stopped, we need to briefly resume so that
// the kernel stacks can clean up. We won't ever return back
// to user mode, though
VERIFY(!process().is_stopped());
resume_from_stopped();
}
if (is_blocked()) {
SpinlockLocker block_lock(m_block_lock);
if (m_blocker) {
// We're blocked in the kernel.
m_blocker->set_interrupted_by_death();
unblock();
}
}
}
void Thread::die_if_needed()
{
VERIFY(Thread::current() == this);
if (!m_should_die)
return;
u32 unlock_count;
[[maybe_unused]] auto rc = unlock_process_if_locked(unlock_count);
dbgln_if(THREAD_DEBUG, "Thread {} is dying", *this);
{
SpinlockLocker lock(g_scheduler_lock);
// It's possible that we don't reach the code after this block if the
// scheduler is invoked and FinalizerTask cleans up this thread, however
// that doesn't matter because we're trying to invoke the scheduler anyway
set_state(Thread::Dying);
}
ScopedCritical critical;
// Flag a context switch. Because we're in a critical section,
// Scheduler::yield will actually only mark a pending context switch
// Simply leaving the critical section would not necessarily trigger
// a switch.
Scheduler::yield();
// Now leave the critical section so that we can also trigger the
// actual context switch
Processor::clear_critical();
dbgln("die_if_needed returned from clear_critical!!! in irq: {}", Processor::current_in_irq());
// We should never get here, but the scoped scheduler lock
// will be released by Scheduler::context_switch again
VERIFY_NOT_REACHED();
}
void Thread::exit(void* exit_value)
{
VERIFY(Thread::current() == this);
m_join_blocker_set.thread_did_exit(exit_value);
set_should_die();
u32 unlock_count;
[[maybe_unused]] auto rc = unlock_process_if_locked(unlock_count);
if (m_thread_specific_range.has_value()) {
auto* region = process().address_space().find_region_from_range(m_thread_specific_range.value());
process().address_space().deallocate_region(*region);
}
#ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
KCOVDevice::free_thread();
#endif
die_if_needed();
}
void Thread::yield_without_releasing_big_lock(VerifyLockNotHeld verify_lock_not_held)
{
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
VERIFY(verify_lock_not_held == VerifyLockNotHeld::No || !process().big_lock().is_locked_by_current_thread());
// Disable interrupts here. This ensures we don't accidentally switch contexts twice
InterruptDisabler disable;
Scheduler::yield(); // flag a switch
u32 prev_critical = Processor::clear_critical();
// NOTE: We may be on a different CPU now!
Processor::restore_critical(prev_critical);
}
void Thread::yield_and_release_relock_big_lock()
{
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
// Disable interrupts here. This ensures we don't accidentally switch contexts twice
InterruptDisabler disable;
Scheduler::yield(); // flag a switch
u32 lock_count_to_restore = 0;
auto previous_locked = unlock_process_if_locked(lock_count_to_restore);
// NOTE: Even though we call Scheduler::yield here, unless we happen
// to be outside of a critical section, the yield will be postponed
// until leaving it in relock_process.
relock_process(previous_locked, lock_count_to_restore);
}
LockMode Thread::unlock_process_if_locked(u32& lock_count_to_restore)
{
return process().big_lock().force_unlock_if_locked(lock_count_to_restore);
}
void Thread::relock_process(LockMode previous_locked, u32 lock_count_to_restore)
{
// Clearing the critical section may trigger the context switch
// flagged by calling Scheduler::yield above.
// We have to do it this way because we intentionally
// leave the critical section here to be able to switch contexts.
u32 prev_critical = Processor::clear_critical();
// CONTEXT SWITCH HAPPENS HERE!
// NOTE: We may be on a different CPU now!
Processor::restore_critical(prev_critical);
if (previous_locked != LockMode::Unlocked) {
// We've unblocked, relock the process if needed and carry on.
process().big_lock().restore_lock(previous_locked, lock_count_to_restore);
}
}
// NOLINTNEXTLINE(readability-make-member-function-const) False positive; We call block<SleepBlocker> which is not const
auto Thread::sleep(clockid_t clock_id, const Time& duration, Time* remaining_time) -> BlockResult
{
VERIFY(state() == Thread::Running);
return Thread::current()->block<Thread::SleepBlocker>({}, Thread::BlockTimeout(false, &duration, nullptr, clock_id), remaining_time);
}
// NOLINTNEXTLINE(readability-make-member-function-const) False positive; We call block<SleepBlocker> which is not const
auto Thread::sleep_until(clockid_t clock_id, const Time& deadline) -> BlockResult
{
VERIFY(state() == Thread::Running);
return Thread::current()->block<Thread::SleepBlocker>({}, Thread::BlockTimeout(true, &deadline, nullptr, clock_id));
}
StringView Thread::state_string() const
{
switch (state()) {
case Thread::Invalid:
return "Invalid"sv;
case Thread::Runnable:
return "Runnable"sv;
case Thread::Running:
return "Running"sv;
case Thread::Dying:
return "Dying"sv;
case Thread::Dead:
return "Dead"sv;
case Thread::Stopped:
return "Stopped"sv;
case Thread::Blocked: {
SpinlockLocker block_lock(m_block_lock);
if (m_blocking_lock)
return "Mutex"sv;
if (m_blocker)
return m_blocker->state_string();
VERIFY_NOT_REACHED();
}
}
PANIC("Thread::state_string(): Invalid state: {}", (int)state());
}
void Thread::finalize()
{
VERIFY(Thread::current() == g_finalizer);
VERIFY(Thread::current() != this);
#if LOCK_DEBUG
VERIFY(!m_lock.is_locked_by_current_processor());
if (lock_count() > 0) {
dbgln("Thread {} leaking {} Locks!", *this, lock_count());
SpinlockLocker list_lock(m_holding_locks_lock);
for (auto& info : m_holding_locks_list) {
const auto& location = info.lock_location;
dbgln(" - Mutex: \"{}\" @ {} locked in function \"{}\" at \"{}:{}\" with a count of: {}", info.lock->name(), info.lock, location.function_name(), location.filename(), location.line_number(), info.count);
}
VERIFY_NOT_REACHED();
}
#endif
{
SpinlockLocker lock(g_scheduler_lock);
dbgln_if(THREAD_DEBUG, "Finalizing thread {}", *this);
set_state(Thread::State::Dead);
m_join_blocker_set.thread_finalizing();
}
if (m_dump_backtrace_on_finalization)
dbgln("{}", backtrace());
drop_thread_count(false);
}
void Thread::drop_thread_count(bool initializing_first_thread)
{
bool is_last = process().remove_thread(*this);
if (!initializing_first_thread && is_last)
process().finalize();
}
void Thread::finalize_dying_threads()
{
VERIFY(Thread::current() == g_finalizer);
Vector<Thread*, 32> dying_threads;
{
SpinlockLocker lock(g_scheduler_lock);
for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
if (thread.is_finalizable())
dying_threads.append(&thread);
});
}
for (auto* thread : dying_threads) {
RefPtr<Process> process = thread->process();
dbgln_if(PROCESS_DEBUG, "Before finalization, {} has {} refs and its process has {}",
*thread, thread->ref_count(), thread->process().ref_count());
thread->finalize();
dbgln_if(PROCESS_DEBUG, "After finalization, {} has {} refs and its process has {}",
*thread, thread->ref_count(), thread->process().ref_count());
// This thread will never execute again, drop the running reference
// NOTE: This may not necessarily drop the last reference if anything
// else is still holding onto this thread!
thread->unref();
}
}
void Thread::update_time_scheduled(u64 current_scheduler_time, bool is_kernel, bool no_longer_running)
{
if (m_last_time_scheduled.has_value()) {
u64 delta;
if (current_scheduler_time >= m_last_time_scheduled.value())
delta = current_scheduler_time - m_last_time_scheduled.value();
else
delta = m_last_time_scheduled.value() - current_scheduler_time; // the unlikely event that the clock wrapped
if (delta != 0) {
// Add it to the global total *before* updating the thread's value!
Scheduler::add_time_scheduled(delta, is_kernel);
auto& total_time = is_kernel ? m_total_time_scheduled_kernel : m_total_time_scheduled_user;
SpinlockLocker scheduler_lock(g_scheduler_lock);
total_time += delta;
}
}
if (no_longer_running)
m_last_time_scheduled = {};
else
m_last_time_scheduled = current_scheduler_time;
}
bool Thread::tick()
{
if (previous_mode() == PreviousMode::KernelMode) {
++m_process->m_ticks_in_kernel;
++m_ticks_in_kernel;
} else {
++m_process->m_ticks_in_user;
++m_ticks_in_user;
}
--m_ticks_left;
return m_ticks_left != 0;
}
void Thread::check_dispatch_pending_signal()
{
auto result = DispatchSignalResult::Continue;
{
SpinlockLocker scheduler_lock(g_scheduler_lock);
if (pending_signals_for_state() != 0) {
SpinlockLocker lock(m_lock);
result = dispatch_one_pending_signal();
}
}
if (result == DispatchSignalResult::Yield) {
yield_without_releasing_big_lock();
}
}
u32 Thread::pending_signals() const
{
SpinlockLocker lock(g_scheduler_lock);
return pending_signals_for_state();
}
u32 Thread::pending_signals_for_state() const
{
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
constexpr u32 stopped_signal_mask = (1 << (SIGCONT - 1)) | (1 << (SIGKILL - 1)) | (1 << (SIGTRAP - 1));
if (is_handling_page_fault())
return 0;
return m_state != Stopped ? m_pending_signals : m_pending_signals & stopped_signal_mask;
}
void Thread::send_signal(u8 signal, [[maybe_unused]] Process* sender)
{
VERIFY(signal < 32);
SpinlockLocker scheduler_lock(g_scheduler_lock);
// FIXME: Figure out what to do for masked signals. Should we also ignore them here?
if (should_ignore_signal(signal)) {
dbgln_if(SIGNAL_DEBUG, "Signal {} was ignored by {}", signal, process());
return;
}
if constexpr (SIGNAL_DEBUG) {
if (sender)
dbgln("Signal: {} sent {} to {}", *sender, signal, process());
else
dbgln("Signal: Kernel send {} to {}", signal, process());
}
m_pending_signals |= 1 << (signal - 1);
m_have_any_unmasked_pending_signals.store((pending_signals_for_state() & ~m_signal_mask) != 0, AK::memory_order_release);
m_signal_blocker_set.unblock_all_blockers_whose_conditions_are_met();
if (!has_unmasked_pending_signals())
return;
if (m_state == Stopped) {
SpinlockLocker lock(m_lock);
if (pending_signals_for_state() != 0) {
dbgln_if(SIGNAL_DEBUG, "Signal: Resuming stopped {} to deliver signal {}", *this, signal);
resume_from_stopped();
}
} else {
SpinlockLocker block_lock(m_block_lock);
dbgln_if(SIGNAL_DEBUG, "Signal: Unblocking {} to deliver signal {}", *this, signal);
unblock(signal);
}
}
u32 Thread::update_signal_mask(u32 signal_mask)
{
SpinlockLocker lock(g_scheduler_lock);
auto previous_signal_mask = m_signal_mask;
m_signal_mask = signal_mask;
m_have_any_unmasked_pending_signals.store((pending_signals_for_state() & ~m_signal_mask) != 0, AK::memory_order_release);
return previous_signal_mask;
}
u32 Thread::signal_mask() const
{
SpinlockLocker lock(g_scheduler_lock);
return m_signal_mask;
}
u32 Thread::signal_mask_block(sigset_t signal_set, bool block)
{
SpinlockLocker lock(g_scheduler_lock);
auto previous_signal_mask = m_signal_mask;
if (block)
m_signal_mask |= signal_set;
else
m_signal_mask &= ~signal_set;
m_have_any_unmasked_pending_signals.store((pending_signals_for_state() & ~m_signal_mask) != 0, AK::memory_order_release);
return previous_signal_mask;
}
void Thread::reset_signals_for_exec()
{
SpinlockLocker lock(g_scheduler_lock);
// The signal mask is preserved across execve(2).
// The pending signal set is preserved across an execve(2).
m_have_any_unmasked_pending_signals.store(false, AK::memory_order_release);
m_signal_action_data.fill({});
// A successful call to execve(2) removes any existing alternate signal stack
m_alternative_signal_stack = 0;
m_alternative_signal_stack_size = 0;
}
// Certain exceptions, such as SIGSEGV and SIGILL, put a
// thread into a state where the signal handler must be
// invoked immediately, otherwise it will continue to fault.
// This function should be used in an exception handler to
// ensure that when the thread resumes, it's executing in
// the appropriate signal handler.
void Thread::send_urgent_signal_to_self(u8 signal)
{
VERIFY(Thread::current() == this);
DispatchSignalResult result;
{
SpinlockLocker lock(g_scheduler_lock);
result = dispatch_signal(signal);
}
if (result == DispatchSignalResult::Terminate) {
Thread::current()->die_if_needed();
VERIFY_NOT_REACHED(); // dispatch_signal will request termination of the thread, so the above call should never return
}
if (result == DispatchSignalResult::Yield)
yield_and_release_relock_big_lock();
}
DispatchSignalResult Thread::dispatch_one_pending_signal()
{
VERIFY(m_lock.is_locked_by_current_processor());
u32 signal_candidates = pending_signals_for_state() & ~m_signal_mask;
if (signal_candidates == 0)
return DispatchSignalResult::Continue;
u8 signal = 1;
for (; signal < 32; ++signal) {
if ((signal_candidates & (1 << (signal - 1))) != 0) {
break;
}
}
return dispatch_signal(signal);
}
DispatchSignalResult Thread::try_dispatch_one_pending_signal(u8 signal)
{
VERIFY(signal != 0);
SpinlockLocker scheduler_lock(g_scheduler_lock);
SpinlockLocker lock(m_lock);
u32 signal_candidates = pending_signals_for_state() & ~m_signal_mask;
if ((signal_candidates & (1 << (signal - 1))) == 0)
return DispatchSignalResult::Continue;
return dispatch_signal(signal);
}
enum class DefaultSignalAction {
Terminate,
Ignore,
DumpCore,
Stop,
Continue,
};
static DefaultSignalAction default_signal_action(u8 signal)
{
VERIFY(signal && signal < NSIG);
switch (signal) {
case SIGHUP:
case SIGINT:
case SIGKILL:
case SIGPIPE:
case SIGALRM:
case SIGUSR1:
case SIGUSR2:
case SIGVTALRM:
case SIGSTKFLT:
case SIGIO:
case SIGPROF:
case SIGTERM:
return DefaultSignalAction::Terminate;
case SIGCHLD:
case SIGURG:
case SIGWINCH:
case SIGINFO:
return DefaultSignalAction::Ignore;
case SIGQUIT:
case SIGILL:
case SIGTRAP:
case SIGABRT:
case SIGBUS:
case SIGFPE:
case SIGSEGV:
case SIGXCPU:
case SIGXFSZ:
case SIGSYS:
return DefaultSignalAction::DumpCore;
case SIGCONT:
return DefaultSignalAction::Continue;
case SIGSTOP:
case SIGTSTP:
case SIGTTIN:
case SIGTTOU:
return DefaultSignalAction::Stop;
default:
VERIFY_NOT_REACHED();
}
}
bool Thread::should_ignore_signal(u8 signal) const
{
VERIFY(signal < 32);
auto const& action = m_signal_action_data[signal];
if (action.handler_or_sigaction.is_null())
return default_signal_action(signal) == DefaultSignalAction::Ignore;
return ((sighandler_t)action.handler_or_sigaction.get() == SIG_IGN);
}
bool Thread::has_signal_handler(u8 signal) const
{
VERIFY(signal < 32);
auto const& action = m_signal_action_data[signal];
return !action.handler_or_sigaction.is_null();
}
bool Thread::is_signal_masked(u8 signal) const
{
VERIFY(signal < 32);
return (1 << (signal - 1)) & m_signal_mask;
}
bool Thread::has_alternative_signal_stack() const
{
return m_alternative_signal_stack_size != 0;
}
bool Thread::is_in_alternative_signal_stack() const
{
auto sp = get_register_dump_from_stack().userspace_sp();
return sp >= m_alternative_signal_stack && sp < m_alternative_signal_stack + m_alternative_signal_stack_size;
}
static ErrorOr<void> push_value_on_user_stack(FlatPtr& stack, FlatPtr data)
{
stack -= sizeof(FlatPtr);
return copy_to_user((FlatPtr*)stack, &data);
}
void Thread::resume_from_stopped()
{
VERIFY(is_stopped());
VERIFY(m_stop_state != State::Invalid);
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
if (m_stop_state == Blocked) {
SpinlockLocker block_lock(m_block_lock);
if (m_blocker || m_blocking_lock) {
// Hasn't been unblocked yet
set_state(Blocked, 0);
} else {
// Was unblocked while stopped
set_state(Runnable);
}
} else {
set_state(m_stop_state, 0);
}
}
DispatchSignalResult Thread::dispatch_signal(u8 signal)
{
VERIFY_INTERRUPTS_DISABLED();
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
VERIFY(signal > 0 && signal <= 32);
VERIFY(process().is_user_process());
VERIFY(this == Thread::current());
dbgln_if(SIGNAL_DEBUG, "Dispatch signal {} to {}, state: {}", signal, *this, state_string());
if (m_state == Invalid || !is_initialized()) {
// Thread has barely been created, we need to wait until it is
// at least in Runnable state and is_initialized() returns true,
// which indicates that it is fully set up an we actually have
// a register state on the stack that we can modify
return DispatchSignalResult::Deferred;
}
VERIFY(previous_mode() == PreviousMode::UserMode);
auto& action = m_signal_action_data[signal];
// FIXME: Implement SA_SIGINFO signal handlers.
VERIFY(!(action.flags & SA_SIGINFO));
// Mark this signal as handled.
m_pending_signals &= ~(1 << (signal - 1));
m_have_any_unmasked_pending_signals.store((m_pending_signals & ~m_signal_mask) != 0, AK::memory_order_release);
auto& process = this->process();
auto* tracer = process.tracer();
if (signal == SIGSTOP || (tracer && default_signal_action(signal) == DefaultSignalAction::DumpCore)) {
dbgln_if(SIGNAL_DEBUG, "Signal {} stopping this thread", signal);
set_state(State::Stopped, signal);
return DispatchSignalResult::Yield;
}
if (signal == SIGCONT) {
dbgln("signal: SIGCONT resuming {}", *this);
} else {
if (tracer) {
// when a thread is traced, it should be stopped whenever it receives a signal
// the tracer is notified of this by using waitpid()
// only "pending signals" from the tracer are sent to the tracee
if (!tracer->has_pending_signal(signal)) {
dbgln("signal: {} stopping {} for tracer", signal, *this);
set_state(Stopped, signal);
return DispatchSignalResult::Yield;
}
tracer->unset_signal(signal);
}
}
auto handler_vaddr = action.handler_or_sigaction;
if (handler_vaddr.is_null()) {
switch (default_signal_action(signal)) {
case DefaultSignalAction::Stop:
set_state(Stopped, signal);
return DispatchSignalResult::Yield;
case DefaultSignalAction::DumpCore:
process.set_should_generate_coredump(true);
process.for_each_thread([](auto& thread) {
thread.set_dump_backtrace_on_finalization();
});
[[fallthrough]];
case DefaultSignalAction::Terminate:
m_process->terminate_due_to_signal(signal);
return DispatchSignalResult::Terminate;
case DefaultSignalAction::Ignore:
VERIFY_NOT_REACHED();
case DefaultSignalAction::Continue:
return DispatchSignalResult::Continue;
}
VERIFY_NOT_REACHED();
}
if ((sighandler_t)handler_vaddr.as_ptr() == SIG_IGN) {
dbgln_if(SIGNAL_DEBUG, "Ignored signal {}", signal);
return DispatchSignalResult::Continue;
}
VERIFY(previous_mode() == PreviousMode::UserMode);
VERIFY(current_trap());
ScopedAddressSpaceSwitcher switcher(m_process);
u32 old_signal_mask = m_signal_mask;
u32 new_signal_mask = action.mask;
if ((action.flags & SA_NODEFER) == SA_NODEFER)
new_signal_mask &= ~(1 << (signal - 1));
else
new_signal_mask |= 1 << (signal - 1);
m_signal_mask |= new_signal_mask;
m_have_any_unmasked_pending_signals.store((m_pending_signals & ~m_signal_mask) != 0, AK::memory_order_release);
bool use_alternative_stack = ((action.flags & SA_ONSTACK) != 0) && has_alternative_signal_stack() && !is_in_alternative_signal_stack();
auto setup_stack = [&](RegisterState& state) -> ErrorOr<void> {
FlatPtr old_sp = state.userspace_sp();
FlatPtr stack;
if (use_alternative_stack)
stack = m_alternative_signal_stack + m_alternative_signal_stack_size;
else
stack = old_sp;
FlatPtr ret_ip = state.ip();
FlatPtr ret_flags = state.flags();
dbgln_if(SIGNAL_DEBUG, "Setting up user stack to return to IP {:p}, SP {:p}", ret_ip, old_sp);
#if ARCH(I386)
// Align the stack to 16 bytes.
// Note that we push 52 bytes (4 * 13) on to the stack
// before the return address, so we need to account for this here.
// 56 % 16 = 4, so we only need to take 4 bytes into consideration for
// the stack alignment.
FlatPtr stack_alignment = (stack - 4) % 16;
stack -= stack_alignment;
TRY(push_value_on_user_stack(stack, ret_flags));
TRY(push_value_on_user_stack(stack, ret_ip));
TRY(push_value_on_user_stack(stack, state.eax));
TRY(push_value_on_user_stack(stack, state.ecx));
TRY(push_value_on_user_stack(stack, state.edx));
TRY(push_value_on_user_stack(stack, state.ebx));
TRY(push_value_on_user_stack(stack, old_sp));
TRY(push_value_on_user_stack(stack, state.ebp));
TRY(push_value_on_user_stack(stack, state.esi));
TRY(push_value_on_user_stack(stack, state.edi));
#else
// Align the stack to 16 bytes.
// Note that we push 168 bytes (8 * 21) on to the stack
// before the return address, so we need to account for this here.
// 168 % 16 = 8, so we only need to take 8 bytes into consideration for
// the stack alignment.
// We also are not allowed to touch the thread's red-zone of 128 bytes
FlatPtr stack_alignment = (stack - 8) % 16;
stack -= 128 + stack_alignment;
TRY(push_value_on_user_stack(stack, ret_flags));
TRY(push_value_on_user_stack(stack, ret_ip));
TRY(push_value_on_user_stack(stack, state.r15));
TRY(push_value_on_user_stack(stack, state.r14));
TRY(push_value_on_user_stack(stack, state.r13));
TRY(push_value_on_user_stack(stack, state.r12));
TRY(push_value_on_user_stack(stack, state.r11));
TRY(push_value_on_user_stack(stack, state.r10));
TRY(push_value_on_user_stack(stack, state.r9));
TRY(push_value_on_user_stack(stack, state.r8));
TRY(push_value_on_user_stack(stack, state.rax));
TRY(push_value_on_user_stack(stack, state.rcx));
TRY(push_value_on_user_stack(stack, state.rdx));
TRY(push_value_on_user_stack(stack, state.rbx));
TRY(push_value_on_user_stack(stack, old_sp));
TRY(push_value_on_user_stack(stack, state.rbp));
TRY(push_value_on_user_stack(stack, state.rsi));
TRY(push_value_on_user_stack(stack, state.rdi));
#endif
// PUSH old_signal_mask
TRY(push_value_on_user_stack(stack, old_signal_mask));
TRY(push_value_on_user_stack(stack, signal));
TRY(push_value_on_user_stack(stack, handler_vaddr.get()));
VERIFY((stack % 16) == 0);
TRY(push_value_on_user_stack(stack, 0)); // push fake return address
// We write back the adjusted stack value into the register state.
// We have to do this because we can't just pass around a reference to a packed field, as it's UB.
state.set_userspace_sp(stack);
return {};
};
// We now place the thread state on the userspace stack.
// Note that we use a RegisterState.
// Conversely, when the thread isn't blocking the RegisterState may not be
// valid (fork, exec etc) but the tss will, so we use that instead.
auto& regs = get_register_dump_from_stack();
auto result = setup_stack(regs);
if (result.is_error()) {
dbgln("Invalid stack pointer: {}", regs.userspace_sp());
process.set_should_generate_coredump(true);
process.for_each_thread([](auto& thread) {
thread.set_dump_backtrace_on_finalization();
});
m_process->terminate_due_to_signal(signal);
return DispatchSignalResult::Terminate;
}
auto signal_trampoline_addr = process.signal_trampoline().get();
regs.set_ip(signal_trampoline_addr);
dbgln_if(SIGNAL_DEBUG, "Thread in state '{}' has been primed with signal handler {:#04x}:{:p} to deliver {}", state_string(), m_regs.cs, m_regs.ip(), signal);
return DispatchSignalResult::Continue;
}
RegisterState& Thread::get_register_dump_from_stack()
{
auto* trap = current_trap();
// We should *always* have a trap. If we don't we're probably a kernel
// thread that hasn't been preempted. If we want to support this, we
// need to capture the registers probably into m_regs and return it
VERIFY(trap);
while (trap) {
if (!trap->next_trap)
break;
trap = trap->next_trap;
}
return *trap->regs;
}
ErrorOr<NonnullRefPtr<Thread>> Thread::try_clone(Process& process)
{
auto clone = TRY(Thread::try_create(process));
auto signal_action_data_span = m_signal_action_data.span();
signal_action_data_span.copy_to(clone->m_signal_action_data.span());
clone->m_signal_mask = m_signal_mask;
clone->m_fpu_state = m_fpu_state;
clone->m_thread_specific_data = m_thread_specific_data;
return clone;
}
void Thread::set_state(State new_state, u8 stop_signal)
{
State previous_state;
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
if (new_state == m_state)
return;
{
SpinlockLocker thread_lock(m_lock);
previous_state = m_state;
if (previous_state == Invalid) {
// If we were *just* created, we may have already pending signals
if (has_unmasked_pending_signals()) {
dbgln_if(THREAD_DEBUG, "Dispatch pending signals to new thread {}", *this);
dispatch_one_pending_signal();
}
}
m_state = new_state;
dbgln_if(THREAD_DEBUG, "Set thread {} state to {}", *this, state_string());
}
if (previous_state == Runnable) {
Scheduler::dequeue_runnable_thread(*this);
} else if (previous_state == Stopped) {
m_stop_state = State::Invalid;
auto& process = this->process();
if (process.set_stopped(false)) {
process.for_each_thread([&](auto& thread) {
if (&thread == this)
return;
if (!thread.is_stopped())
return;
dbgln_if(THREAD_DEBUG, "Resuming peer thread {}", thread);
thread.resume_from_stopped();
});
process.unblock_waiters(Thread::WaitBlocker::UnblockFlags::Continued);
// Tell the parent process (if any) about this change.
if (auto parent = Process::from_pid(process.ppid())) {
[[maybe_unused]] auto result = parent->send_signal(SIGCHLD, &process);
}
}
}
if (m_state == Runnable) {
Scheduler::enqueue_runnable_thread(*this);
Processor::smp_wake_n_idle_processors(1);
} else if (m_state == Stopped) {
// We don't want to restore to Running state, only Runnable!
m_stop_state = previous_state != Running ? previous_state : Runnable;
auto& process = this->process();
if (!process.set_stopped(true)) {
process.for_each_thread([&](auto& thread) {
if (&thread == this)
return;
if (thread.is_stopped())
return;
dbgln_if(THREAD_DEBUG, "Stopping peer thread {}", thread);
thread.set_state(Stopped, stop_signal);
});
process.unblock_waiters(Thread::WaitBlocker::UnblockFlags::Stopped, stop_signal);
// Tell the parent process (if any) about this change.
if (auto parent = Process::from_pid(process.ppid())) {
[[maybe_unused]] auto result = parent->send_signal(SIGCHLD, &process);
}
}
} else if (m_state == Dying) {
VERIFY(previous_state != Blocked);
if (this != Thread::current() && is_finalizable()) {
// Some other thread set this thread to Dying, notify the
// finalizer right away as it can be cleaned up now
Scheduler::notify_finalizer();
}
}
}
struct RecognizedSymbol {
FlatPtr address;
const KernelSymbol* symbol { nullptr };
};
static bool symbolicate(RecognizedSymbol const& symbol, Process& process, StringBuilder& builder)
{
if (symbol.address == 0)
return false;
bool mask_kernel_addresses = !process.is_superuser();
if (!symbol.symbol) {
if (!Memory::is_user_address(VirtualAddress(symbol.address))) {
builder.append("0xdeadc0de\n");
} else {
if (auto* region = process.address_space().find_region_containing({ VirtualAddress(symbol.address), sizeof(FlatPtr) })) {
size_t offset = symbol.address - region->vaddr().get();
if (auto region_name = region->name(); !region_name.is_null() && !region_name.is_empty())
builder.appendff("{:p} {} + {:#x}\n", (void*)symbol.address, region_name, offset);
else
builder.appendff("{:p} {:p} + {:#x}\n", (void*)symbol.address, region->vaddr().as_ptr(), offset);
} else {
builder.appendff("{:p}\n", symbol.address);
}
}
return true;
}
unsigned offset = symbol.address - symbol.symbol->address;
if (symbol.symbol->address == g_highest_kernel_symbol_address && offset > 4096) {
builder.appendff("{:p}\n", (void*)(mask_kernel_addresses ? 0xdeadc0de : symbol.address));
} else {
builder.appendff("{:p} {} + {:#x}\n", (void*)(mask_kernel_addresses ? 0xdeadc0de : symbol.address), symbol.symbol->name, offset);
}
return true;
}
String Thread::backtrace()
{
Vector<RecognizedSymbol, 128> recognized_symbols;
auto& process = const_cast<Process&>(this->process());
auto stack_trace = Processor::capture_stack_trace(*this);
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
ScopedAddressSpaceSwitcher switcher(process);
for (auto& frame : stack_trace) {
if (Memory::is_user_range(VirtualAddress(frame), sizeof(FlatPtr) * 2)) {
recognized_symbols.append({ frame });
} else {
recognized_symbols.append({ frame, symbolicate_kernel_address(frame) });
}
}
StringBuilder builder;
for (auto& symbol : recognized_symbols) {
if (!symbolicate(symbol, process, builder))
break;
}
return builder.to_string();
}
size_t Thread::thread_specific_region_alignment() const
{
return max(process().m_master_tls_alignment, alignof(ThreadSpecificData));
}
size_t Thread::thread_specific_region_size() const
{
return align_up_to(process().m_master_tls_size, thread_specific_region_alignment()) + sizeof(ThreadSpecificData);
}
ErrorOr<void> Thread::make_thread_specific_region(Badge<Process>)
{
// The process may not require a TLS region, or allocate TLS later with sys$allocate_tls (which is what dynamically loaded programs do)
if (!process().m_master_tls_region)
return {};
auto range = TRY(process().address_space().try_allocate_range({}, thread_specific_region_size()));
auto* region = TRY(process().address_space().allocate_region(range, "Thread-specific", PROT_READ | PROT_WRITE));
m_thread_specific_range = range;
SmapDisabler disabler;
auto* thread_specific_data = (ThreadSpecificData*)region->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment())).as_ptr();
auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment);
m_thread_specific_data = VirtualAddress(thread_specific_data);
thread_specific_data->self = thread_specific_data;
if (process().m_master_tls_size != 0)
memcpy(thread_local_storage, process().m_master_tls_region.unsafe_ptr()->vaddr().as_ptr(), process().m_master_tls_size);
return {};
}
RefPtr<Thread> Thread::from_tid(ThreadID tid)
{
return Thread::all_instances().with([&](auto& list) -> RefPtr<Thread> {
for (Thread& thread : list) {
if (thread.tid() == tid)
return thread;
}
return nullptr;
});
}
void Thread::reset_fpu_state()
{
memcpy(&m_fpu_state, &Processor::clean_fpu_state(), sizeof(FPUState));
}
bool Thread::should_be_stopped() const
{
return process().is_stopped();
}
void Thread::track_lock_acquire(LockRank rank)
{
// Nothing to do for locks without a rank.
if (rank == LockRank::None)
return;
if (m_lock_rank_mask != LockRank::None) {
// Verify we are only attempting to take a lock of a higher rank.
VERIFY(m_lock_rank_mask > rank);
}
m_lock_rank_mask |= rank;
}
void Thread::track_lock_release(LockRank rank)
{
// Nothing to do for locks without a rank.
if (rank == LockRank::None)
return;
// The rank value from the caller should only contain a single bit, otherwise
// we are disabling the tracking for multiple locks at once which will corrupt
// the lock tracking mask, and we will assert somewhere else.
auto rank_is_a_single_bit = [](auto rank_enum) -> bool {
auto rank = to_underlying(rank_enum);
auto rank_without_least_significant_bit = rank - 1;
return (rank & rank_without_least_significant_bit) == 0;
};
// We can't release locks out of order, as that would violate the ranking.
// This is validated by toggling the least significant bit of the mask, and
// then bit wise or-ing the rank we are trying to release with the resulting
// mask. If the rank we are releasing is truly the highest rank then the mask
// we get back will be equal to the current mask of stored on the thread.
auto rank_is_in_order = [](auto mask_enum, auto rank_enum) -> bool {
auto mask = to_underlying(mask_enum);
auto rank = to_underlying(rank_enum);
auto mask_without_least_significant_bit = mask - 1;
return ((mask & mask_without_least_significant_bit) | rank) == mask;
};
VERIFY(has_flag(m_lock_rank_mask, rank));
VERIFY(rank_is_a_single_bit(rank));
VERIFY(rank_is_in_order(m_lock_rank_mask, rank));
m_lock_rank_mask ^= rank;
}
}
ErrorOr<void> AK::Formatter<Kernel::Thread>::format(FormatBuilder& builder, Kernel::Thread const& value)
{
return AK::Formatter<FormatString>::format(
builder,
"{}({}:{})", value.process().name(), value.pid().value(), value.tid().value());
}
|