1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
|
/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Demangle.h>
#include <AK/StringBuilder.h>
#include <AK/Time.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/KSyms.h>
#include <Kernel/Process.h>
#include <Kernel/Profiling.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Thread.h>
#include <Kernel/ThreadTracer.h>
#include <Kernel/TimerQueue.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/PageDirectory.h>
#include <Kernel/VM/ProcessPagingScope.h>
#include <LibC/signal_numbers.h>
#include <LibELF/Loader.h>
//#define SIGNAL_DEBUG
//#define THREAD_DEBUG
namespace Kernel {
Thread::Thread(NonnullRefPtr<Process> process)
: m_process(move(process))
, m_name(m_process->name())
{
if (m_process->m_thread_count.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel) == 0) {
// First thread gets TID == PID
m_tid = m_process->pid().value();
} else {
m_tid = Process::allocate_pid().value();
}
#ifdef THREAD_DEBUG
dbg() << "Created new thread " << m_process->name() << "(" << m_process->pid().value() << ":" << m_tid.value() << ")";
#endif
set_default_signal_dispositions();
m_fpu_state = (FPUState*)kmalloc_aligned<16>(sizeof(FPUState));
reset_fpu_state();
memset(&m_tss, 0, sizeof(m_tss));
m_tss.iomapbase = sizeof(TSS32);
// Only IF is set when a process boots.
m_tss.eflags = 0x0202;
if (m_process->is_kernel_process()) {
m_tss.cs = GDT_SELECTOR_CODE0;
m_tss.ds = GDT_SELECTOR_DATA0;
m_tss.es = GDT_SELECTOR_DATA0;
m_tss.fs = GDT_SELECTOR_PROC;
m_tss.ss = GDT_SELECTOR_DATA0;
m_tss.gs = 0;
} else {
m_tss.cs = GDT_SELECTOR_CODE3 | 3;
m_tss.ds = GDT_SELECTOR_DATA3 | 3;
m_tss.es = GDT_SELECTOR_DATA3 | 3;
m_tss.fs = GDT_SELECTOR_DATA3 | 3;
m_tss.ss = GDT_SELECTOR_DATA3 | 3;
m_tss.gs = GDT_SELECTOR_TLS | 3;
}
m_tss.cr3 = m_process->page_directory().cr3();
m_kernel_stack_region = MM.allocate_kernel_region(default_kernel_stack_size, String::format("Kernel Stack (Thread %d)", m_tid.value()), Region::Access::Read | Region::Access::Write, false, true);
m_kernel_stack_region->set_stack(true);
m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & 0xfffffff8u;
if (m_process->is_kernel_process()) {
m_tss.esp = m_tss.esp0 = m_kernel_stack_top;
} else {
// Ring 3 processes get a separate stack for ring 0.
// The ring 3 stack will be assigned by exec().
m_tss.ss0 = GDT_SELECTOR_DATA0;
m_tss.esp0 = m_kernel_stack_top;
}
// We need to add another reference if we could successfully create
// all the resources needed for this thread. The reason for this is that
// we don't want to delete this thread after dropping the reference,
// it may still be running or scheduled to be run.
// The finalizer is responsible for dropping this reference once this
// thread is ready to be cleaned up.
ref();
if (m_process->pid() != 0)
Scheduler::init_thread(*this);
}
Thread::~Thread()
{
{
// We need to explicitly remove ourselves from the thread list
// here. We may get pre-empted in the middle of destructing this
// thread, which causes problems if the thread list is iterated.
// Specifically, if this is the last thread of a process, checking
// block conditions would access m_process, which would be in
// the middle of being destroyed.
ScopedSpinLock lock(g_scheduler_lock);
g_scheduler_data->thread_list_for_state(m_state).remove(*this);
}
ASSERT(!m_joiner);
}
void Thread::unblock()
{
ASSERT(g_scheduler_lock.own_lock());
ASSERT(m_lock.own_lock());
m_blocker = nullptr;
if (Thread::current() == this) {
set_state(Thread::Running);
return;
}
ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
set_state(Thread::Runnable);
}
void Thread::set_should_die()
{
if (m_should_die) {
#ifdef THREAD_DEBUG
dbg() << *this << " Should already die";
#endif
return;
}
ScopedCritical critical;
// Remember that we should die instead of returning to
// the userspace.
{
ScopedSpinLock lock(g_scheduler_lock);
m_should_die = true;
// NOTE: Even the current thread can technically be in "Stopped"
// state! This is the case when another thread sent a SIGSTOP to
// it while it was running and it calls e.g. exit() before
// the scheduler gets involved again.
if (is_stopped()) {
// If we were stopped, we need to briefly resume so that
// the kernel stacks can clean up. We won't ever return back
// to user mode, though
resume_from_stopped();
} else if (state() == Queued) {
// m_queue can only be accessed safely if g_scheduler_lock is held!
if (m_queue) {
m_queue->dequeue(*this);
m_queue = nullptr;
// Wake the thread
wake_from_queue();
}
}
}
if (is_blocked()) {
ScopedSpinLock lock(m_lock);
ASSERT(m_blocker != nullptr);
// We're blocked in the kernel.
m_blocker->set_interrupted_by_death();
unblock();
}
}
void Thread::die_if_needed()
{
ASSERT(Thread::current() == this);
if (!m_should_die)
return;
unlock_process_if_locked();
ScopedCritical critical;
set_should_die();
// Flag a context switch. Because we're in a critical section,
// Scheduler::yield will actually only mark a pending scontext switch
// Simply leaving the critical section would not necessarily trigger
// a switch.
Scheduler::yield();
// Now leave the critical section so that we can also trigger the
// actual context switch
u32 prev_flags;
Processor::current().clear_critical(prev_flags, false);
dbg() << "die_if_needed returned form clear_critical!!! in irq: " << Processor::current().in_irq();
// We should never get here, but the scoped scheduler lock
// will be released by Scheduler::context_switch again
ASSERT_NOT_REACHED();
}
void Thread::yield_without_holding_big_lock()
{
bool did_unlock = unlock_process_if_locked();
// NOTE: Even though we call Scheduler::yield here, unless we happen
// to be outside of a critical section, the yield will be postponed
// until leaving it in relock_process.
Scheduler::yield();
relock_process(did_unlock);
}
bool Thread::unlock_process_if_locked()
{
return process().big_lock().force_unlock_if_locked();
}
void Thread::relock_process(bool did_unlock)
{
// Clearing the critical section may trigger the context switch
// flagged by calling Scheduler::donate_to or Scheduler::yield
// above. We have to do it this way because we intentionally
// leave the critical section here to be able to switch contexts.
u32 prev_flags;
u32 prev_crit = Processor::current().clear_critical(prev_flags, true);
if (did_unlock) {
// We've unblocked, relock the process if needed and carry on.
process().big_lock().lock();
}
// NOTE: We may be on a different CPU now!
Processor::current().restore_critical(prev_crit, prev_flags);
}
auto Thread::sleep(const timespec& duration, timespec* remaining_time) -> BlockResult
{
ASSERT(state() == Thread::Running);
return Thread::current()->block<Thread::SleepBlocker>(nullptr, Thread::BlockTimeout(false, &duration), remaining_time);
}
auto Thread::sleep_until(const timespec& deadline) -> BlockResult
{
ASSERT(state() == Thread::Running);
return Thread::current()->block<Thread::SleepBlocker>(nullptr, Thread::BlockTimeout(true, &deadline));
}
const char* Thread::state_string() const
{
switch (state()) {
case Thread::Invalid:
return "Invalid";
case Thread::Runnable:
return "Runnable";
case Thread::Running:
return "Running";
case Thread::Dying:
return "Dying";
case Thread::Dead:
return "Dead";
case Thread::Stopped:
return "Stopped";
case Thread::Queued:
return "Queued";
case Thread::Blocked: {
ScopedSpinLock lock(m_lock);
ASSERT(m_blocker != nullptr);
return m_blocker->state_string();
}
}
klog() << "Thread::state_string(): Invalid state: " << state();
ASSERT_NOT_REACHED();
return nullptr;
}
void Thread::finalize()
{
ASSERT(Thread::current() == g_finalizer);
ASSERT(Thread::current() != this);
ASSERT(!m_lock.own_lock());
{
ScopedSpinLock lock(g_scheduler_lock);
#ifdef THREAD_DEBUG
dbg() << "Finalizing thread " << *this;
#endif
set_state(Thread::State::Dead);
if (auto* joiner = m_joiner.exchange(nullptr, AK::memory_order_acq_rel)) {
// Notify joiner that we exited
static_cast<JoinBlocker*>(joiner->m_blocker)->joinee_exited(m_exit_value);
}
}
if (m_dump_backtrace_on_finalization)
dbg() << backtrace_impl();
kfree_aligned(m_fpu_state);
auto thread_cnt_before = m_process->m_thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
ASSERT(thread_cnt_before != 0);
if (thread_cnt_before == 1)
process().finalize();
}
void Thread::finalize_dying_threads()
{
ASSERT(Thread::current() == g_finalizer);
Vector<Thread*, 32> dying_threads;
{
ScopedSpinLock lock(g_scheduler_lock);
for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
if (thread.is_finalizable())
dying_threads.append(&thread);
return IterationDecision::Continue;
});
}
for (auto* thread : dying_threads) {
thread->finalize();
// This thread will never execute again, drop the running reference
// NOTE: This may not necessarily drop the last reference if anything
// else is still holding onto this thread!
thread->unref();
}
}
bool Thread::tick()
{
++m_ticks;
if (tss().cs & 3)
++m_process->m_ticks_in_user;
else
++m_process->m_ticks_in_kernel;
return --m_ticks_left;
}
bool Thread::has_pending_signal(u8 signal) const
{
ScopedSpinLock lock(g_scheduler_lock);
return m_pending_signals & (1 << (signal - 1));
}
u32 Thread::pending_signals() const
{
ScopedSpinLock lock(g_scheduler_lock);
return m_pending_signals;
}
void Thread::send_signal(u8 signal, [[maybe_unused]] Process* sender)
{
ASSERT(signal < 32);
ScopedSpinLock lock(g_scheduler_lock);
// FIXME: Figure out what to do for masked signals. Should we also ignore them here?
if (should_ignore_signal(signal)) {
#ifdef SIGNAL_DEBUG
dbg() << "Signal " << signal << " was ignored by " << process();
#endif
return;
}
#ifdef SIGNAL_DEBUG
if (sender)
dbg() << "Signal: " << *sender << " sent " << signal << " to " << process();
else
dbg() << "Signal: Kernel sent " << signal << " to " << process();
#endif
m_pending_signals |= 1 << (signal - 1);
m_have_any_unmasked_pending_signals.store(m_pending_signals & ~m_signal_mask, AK::memory_order_release);
}
u32 Thread::update_signal_mask(u32 signal_mask)
{
ScopedSpinLock lock(g_scheduler_lock);
auto previous_signal_mask = m_signal_mask;
m_signal_mask = signal_mask;
m_have_any_unmasked_pending_signals.store(m_pending_signals & ~m_signal_mask, AK::memory_order_release);
return previous_signal_mask;
}
u32 Thread::signal_mask() const
{
ScopedSpinLock lock(g_scheduler_lock);
return m_signal_mask;
}
u32 Thread::signal_mask_block(sigset_t signal_set, bool block)
{
ScopedSpinLock lock(g_scheduler_lock);
auto previous_signal_mask = m_signal_mask;
if (block)
m_signal_mask &= ~signal_set;
else
m_signal_mask |= signal_set;
m_have_any_unmasked_pending_signals.store(m_pending_signals & ~m_signal_mask, AK::memory_order_release);
return previous_signal_mask;
}
void Thread::clear_signals()
{
ScopedSpinLock lock(g_scheduler_lock);
m_signal_mask = 0;
m_pending_signals = 0;
m_have_any_unmasked_pending_signals.store(false, AK::memory_order_release);
}
// Certain exceptions, such as SIGSEGV and SIGILL, put a
// thread into a state where the signal handler must be
// invoked immediately, otherwise it will continue to fault.
// This function should be used in an exception handler to
// ensure that when the thread resumes, it's executing in
// the appropriate signal handler.
void Thread::send_urgent_signal_to_self(u8 signal)
{
ASSERT(Thread::current() == this);
ScopedSpinLock lock(g_scheduler_lock);
if (dispatch_signal(signal) == ShouldUnblockThread::No)
Scheduler::yield();
}
ShouldUnblockThread Thread::dispatch_one_pending_signal()
{
ASSERT(m_lock.own_lock());
u32 signal_candidates = m_pending_signals & ~m_signal_mask;
ASSERT(signal_candidates);
u8 signal = 1;
for (; signal < 32; ++signal) {
if (signal_candidates & (1 << (signal - 1))) {
break;
}
}
return dispatch_signal(signal);
}
enum class DefaultSignalAction {
Terminate,
Ignore,
DumpCore,
Stop,
Continue,
};
static DefaultSignalAction default_signal_action(u8 signal)
{
ASSERT(signal && signal < NSIG);
switch (signal) {
case SIGHUP:
case SIGINT:
case SIGKILL:
case SIGPIPE:
case SIGALRM:
case SIGUSR1:
case SIGUSR2:
case SIGVTALRM:
case SIGSTKFLT:
case SIGIO:
case SIGPROF:
case SIGTERM:
return DefaultSignalAction::Terminate;
case SIGCHLD:
case SIGURG:
case SIGWINCH:
case SIGINFO:
return DefaultSignalAction::Ignore;
case SIGQUIT:
case SIGILL:
case SIGTRAP:
case SIGABRT:
case SIGBUS:
case SIGFPE:
case SIGSEGV:
case SIGXCPU:
case SIGXFSZ:
case SIGSYS:
return DefaultSignalAction::DumpCore;
case SIGCONT:
return DefaultSignalAction::Continue;
case SIGSTOP:
case SIGTSTP:
case SIGTTIN:
case SIGTTOU:
return DefaultSignalAction::Stop;
}
ASSERT_NOT_REACHED();
}
bool Thread::should_ignore_signal(u8 signal) const
{
ASSERT(signal < 32);
auto& action = m_signal_action_data[signal];
if (action.handler_or_sigaction.is_null())
return default_signal_action(signal) == DefaultSignalAction::Ignore;
if (action.handler_or_sigaction.as_ptr() == SIG_IGN)
return true;
return false;
}
bool Thread::has_signal_handler(u8 signal) const
{
ASSERT(signal < 32);
auto& action = m_signal_action_data[signal];
return !action.handler_or_sigaction.is_null();
}
static bool push_value_on_user_stack(u32* stack, u32 data)
{
*stack -= 4;
return copy_to_user((u32*)*stack, &data);
}
void Thread::resume_from_stopped()
{
ASSERT(is_stopped());
ASSERT(m_stop_state != State::Invalid);
ASSERT(g_scheduler_lock.own_lock());
set_state(m_stop_state);
m_stop_state = State::Invalid;
// make sure SemiPermanentBlocker is unblocked
if (m_state != Thread::Runnable && m_state != Thread::Running) {
ScopedSpinLock lock(m_lock);
if (m_blocker && m_blocker->is_reason_signal())
unblock();
}
}
ShouldUnblockThread Thread::dispatch_signal(u8 signal)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(g_scheduler_lock.own_lock());
ASSERT(signal > 0 && signal <= 32);
ASSERT(process().is_user_process());
#ifdef SIGNAL_DEBUG
klog() << "signal: dispatch signal " << signal << " to " << *this;
#endif
if (m_state == Invalid || !is_initialized()) {
// Thread has barely been created, we need to wait until it is
// at least in Runnable state and is_initialized() returns true,
// which indicates that it is fully set up an we actually have
// a register state on the stack that we can modify
return ShouldUnblockThread::No;
}
auto& action = m_signal_action_data[signal];
// FIXME: Implement SA_SIGINFO signal handlers.
ASSERT(!(action.flags & SA_SIGINFO));
// Mark this signal as handled.
m_pending_signals &= ~(1 << (signal - 1));
m_have_any_unmasked_pending_signals.store(m_pending_signals & ~m_signal_mask, AK::memory_order_release);
if (signal == SIGSTOP) {
if (!is_stopped()) {
m_stop_signal = SIGSTOP;
set_state(State::Stopped);
}
return ShouldUnblockThread::No;
}
if (signal == SIGCONT && is_stopped()) {
resume_from_stopped();
} else {
auto* thread_tracer = tracer();
if (thread_tracer != nullptr) {
// when a thread is traced, it should be stopped whenever it receives a signal
// the tracer is notified of this by using waitpid()
// only "pending signals" from the tracer are sent to the tracee
if (!thread_tracer->has_pending_signal(signal)) {
m_stop_signal = signal;
// make sure SemiPermanentBlocker is unblocked
ScopedSpinLock lock(m_lock);
if (m_blocker && m_blocker->is_reason_signal())
unblock();
set_state(Stopped);
return ShouldUnblockThread::No;
}
thread_tracer->unset_signal(signal);
}
}
auto handler_vaddr = action.handler_or_sigaction;
if (handler_vaddr.is_null()) {
switch (default_signal_action(signal)) {
case DefaultSignalAction::Stop:
m_stop_signal = signal;
set_state(Stopped);
return ShouldUnblockThread::No;
case DefaultSignalAction::DumpCore:
process().for_each_thread([](auto& thread) {
thread.set_dump_backtrace_on_finalization();
return IterationDecision::Continue;
});
[[fallthrough]];
case DefaultSignalAction::Terminate:
m_process->terminate_due_to_signal(signal);
return ShouldUnblockThread::No;
case DefaultSignalAction::Ignore:
ASSERT_NOT_REACHED();
case DefaultSignalAction::Continue:
return ShouldUnblockThread::Yes;
}
ASSERT_NOT_REACHED();
}
if (handler_vaddr.as_ptr() == SIG_IGN) {
#ifdef SIGNAL_DEBUG
klog() << "signal: " << *this << " ignored signal " << signal;
#endif
return ShouldUnblockThread::Yes;
}
ProcessPagingScope paging_scope(m_process);
u32 old_signal_mask = m_signal_mask;
u32 new_signal_mask = action.mask;
if (action.flags & SA_NODEFER)
new_signal_mask &= ~(1 << (signal - 1));
else
new_signal_mask |= 1 << (signal - 1);
m_signal_mask |= new_signal_mask;
m_have_any_unmasked_pending_signals.store(m_pending_signals & ~m_signal_mask, AK::memory_order_release);
auto setup_stack = [&](RegisterState& state) {
u32* stack = &state.userspace_esp;
u32 old_esp = *stack;
u32 ret_eip = state.eip;
u32 ret_eflags = state.eflags;
#ifdef SIGNAL_DEBUG
klog() << "signal: setting up user stack to return to eip: " << String::format("%p", ret_eip) << " esp: " << String::format("%p", old_esp);
#endif
// Align the stack to 16 bytes.
// Note that we push 56 bytes (4 * 14) on to the stack,
// so we need to account for this here.
u32 stack_alignment = (*stack - 56) % 16;
*stack -= stack_alignment;
push_value_on_user_stack(stack, ret_eflags);
push_value_on_user_stack(stack, ret_eip);
push_value_on_user_stack(stack, state.eax);
push_value_on_user_stack(stack, state.ecx);
push_value_on_user_stack(stack, state.edx);
push_value_on_user_stack(stack, state.ebx);
push_value_on_user_stack(stack, old_esp);
push_value_on_user_stack(stack, state.ebp);
push_value_on_user_stack(stack, state.esi);
push_value_on_user_stack(stack, state.edi);
// PUSH old_signal_mask
push_value_on_user_stack(stack, old_signal_mask);
push_value_on_user_stack(stack, signal);
push_value_on_user_stack(stack, handler_vaddr.get());
push_value_on_user_stack(stack, 0); //push fake return address
ASSERT((*stack % 16) == 0);
};
// We now place the thread state on the userspace stack.
// Note that we use a RegisterState.
// Conversely, when the thread isn't blocking the RegisterState may not be
// valid (fork, exec etc) but the tss will, so we use that instead.
auto& regs = get_register_dump_from_stack();
setup_stack(regs);
regs.eip = g_return_to_ring3_from_signal_trampoline.get();
#ifdef SIGNAL_DEBUG
klog() << "signal: Okay, " << *this << " {" << state_string() << "} has been primed with signal handler " << String::format("%w", m_tss.cs) << ":" << String::format("%x", m_tss.eip) << " to deliver " << signal;
#endif
return ShouldUnblockThread::Yes;
}
void Thread::set_default_signal_dispositions()
{
// FIXME: Set up all the right default actions. See signal(7).
memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
m_signal_action_data[SIGCHLD].handler_or_sigaction = VirtualAddress(SIG_IGN);
m_signal_action_data[SIGWINCH].handler_or_sigaction = VirtualAddress(SIG_IGN);
}
bool Thread::push_value_on_stack(FlatPtr value)
{
m_tss.esp -= 4;
FlatPtr* stack_ptr = (FlatPtr*)m_tss.esp;
return copy_to_user(stack_ptr, &value);
}
RegisterState& Thread::get_register_dump_from_stack()
{
return *(RegisterState*)(kernel_stack_top() - sizeof(RegisterState));
}
KResultOr<u32> Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment, Vector<AuxiliaryValue> auxiliary_values)
{
auto* region = m_process->allocate_region(VirtualAddress(), default_userspace_stack_size, "Stack (Main thread)", PROT_READ | PROT_WRITE, false);
if (!region)
return KResult(-ENOMEM);
region->set_stack(true);
FlatPtr new_esp = region->vaddr().offset(default_userspace_stack_size).get();
auto push_on_new_stack = [&new_esp](u32 value) {
new_esp -= 4;
Userspace<u32*> stack_ptr = new_esp;
return copy_to_user(stack_ptr, &value);
};
auto push_aux_value_on_new_stack = [&new_esp](auxv_t value) {
new_esp -= sizeof(auxv_t);
Userspace<auxv_t*> stack_ptr = new_esp;
return copy_to_user(stack_ptr, &value);
};
auto push_string_on_new_stack = [&new_esp](const String& string) {
new_esp -= round_up_to_power_of_two(string.length() + 1, 4);
Userspace<u32*> stack_ptr = new_esp;
return copy_to_user(stack_ptr, string.characters(), string.length() + 1);
};
Vector<FlatPtr> argv_entries;
for (auto& argument : arguments) {
push_string_on_new_stack(argument);
argv_entries.append(new_esp);
}
Vector<FlatPtr> env_entries;
for (auto& variable : environment) {
push_string_on_new_stack(variable);
env_entries.append(new_esp);
}
for (auto& value : auxiliary_values) {
if (!value.optional_string.is_empty()) {
push_string_on_new_stack(value.optional_string);
value.auxv.a_un.a_ptr = (void*)new_esp;
}
}
for (ssize_t i = auxiliary_values.size() - 1; i >= 0; --i) {
auto& value = auxiliary_values[i];
push_aux_value_on_new_stack(value.auxv);
}
push_on_new_stack(0);
for (ssize_t i = env_entries.size() - 1; i >= 0; --i)
push_on_new_stack(env_entries[i]);
FlatPtr envp = new_esp;
push_on_new_stack(0);
for (ssize_t i = argv_entries.size() - 1; i >= 0; --i)
push_on_new_stack(argv_entries[i]);
FlatPtr argv = new_esp;
// NOTE: The stack needs to be 16-byte aligned.
new_esp -= new_esp % 16;
push_on_new_stack((FlatPtr)envp);
push_on_new_stack((FlatPtr)argv);
push_on_new_stack((FlatPtr)argv_entries.size());
push_on_new_stack(0);
return new_esp;
}
RefPtr<Thread> Thread::clone(Process& process)
{
auto clone = adopt(*new Thread(process));
memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
clone->m_signal_mask = m_signal_mask;
memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
clone->m_thread_specific_data = m_thread_specific_data;
clone->m_thread_specific_region_size = m_thread_specific_region_size;
return clone;
}
void Thread::set_state(State new_state)
{
ASSERT(g_scheduler_lock.own_lock());
if (new_state == m_state)
return;
if (new_state == Blocked) {
// we should always have a Blocker while blocked
ASSERT(m_blocker != nullptr);
}
auto previous_state = m_state;
if (previous_state == Invalid) {
// If we were *just* created, we may have already pending signals
ScopedSpinLock thread_lock(m_lock);
if (has_unmasked_pending_signals()) {
dbg() << "Dispatch pending signals to new thread " << *this;
dispatch_one_pending_signal();
}
}
if (new_state == Stopped) {
// We don't want to restore to Running state, only Runnable!
m_stop_state = m_state != Running ? m_state : Runnable;
}
m_state = new_state;
#ifdef THREAD_DEBUG
dbg() << "Set Thread " << *this << " state to " << state_string();
#endif
if (m_process->pid() != 0) {
update_state_for_thread(previous_state);
ASSERT(g_scheduler_data->has_thread(*this));
}
if (m_state == Dying) {
ASSERT(previous_state != Queued);
if (this != Thread::current() && is_finalizable()) {
// Some other thread set this thread to Dying, notify the
// finalizer right away as it can be cleaned up now
Scheduler::notify_finalizer();
}
}
}
void Thread::update_state_for_thread(Thread::State previous_state)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(g_scheduler_data);
ASSERT(g_scheduler_lock.own_lock());
auto& previous_list = g_scheduler_data->thread_list_for_state(previous_state);
auto& list = g_scheduler_data->thread_list_for_state(state());
if (&previous_list != &list) {
previous_list.remove(*this);
}
if (list.contains(*this))
return;
list.append(*this);
}
String Thread::backtrace()
{
return backtrace_impl();
}
struct RecognizedSymbol {
u32 address;
const KernelSymbol* symbol { nullptr };
};
static bool symbolicate(const RecognizedSymbol& symbol, const Process& process, StringBuilder& builder, Process::ELFBundle* elf_bundle)
{
if (!symbol.address)
return false;
bool mask_kernel_addresses = !process.is_superuser();
if (!symbol.symbol) {
if (!is_user_address(VirtualAddress(symbol.address))) {
builder.append("0xdeadc0de\n");
} else {
if (elf_bundle && elf_bundle->elf_loader->has_symbols())
builder.appendf("%p %s\n", symbol.address, elf_bundle->elf_loader->symbolicate(symbol.address).characters());
else
builder.appendf("%p\n", symbol.address);
}
return true;
}
unsigned offset = symbol.address - symbol.symbol->address;
if (symbol.symbol->address == g_highest_kernel_symbol_address && offset > 4096) {
builder.appendf("%p\n", mask_kernel_addresses ? 0xdeadc0de : symbol.address);
} else {
builder.appendf("%p %s +%u\n", mask_kernel_addresses ? 0xdeadc0de : symbol.address, demangle(symbol.symbol->name).characters(), offset);
}
return true;
}
String Thread::backtrace_impl()
{
Vector<RecognizedSymbol, 128> recognized_symbols;
auto& process = const_cast<Process&>(this->process());
OwnPtr<Process::ELFBundle> elf_bundle;
if (!Processor::current().in_irq()) {
// If we're handling IRQs we can't really safely symbolicate
elf_bundle = process.elf_bundle();
}
ProcessPagingScope paging_scope(process);
// To prevent a context switch involving this thread, which may happen
// on another processor, we need to acquire the scheduler lock while
// walking the stack
{
ScopedSpinLock lock(g_scheduler_lock);
FlatPtr stack_ptr, eip;
if (Processor::get_context_frame_ptr(*this, stack_ptr, eip)) {
recognized_symbols.append({ eip, symbolicate_kernel_address(eip) });
while (stack_ptr) {
FlatPtr retaddr;
if (is_user_range(VirtualAddress(stack_ptr), sizeof(FlatPtr) * 2)) {
if (!copy_from_user(&retaddr, &((FlatPtr*)stack_ptr)[1]))
break;
recognized_symbols.append({ retaddr, symbolicate_kernel_address(retaddr) });
if (!copy_from_user(&stack_ptr, (FlatPtr*)stack_ptr))
break;
} else {
void* fault_at;
if (!safe_memcpy(&retaddr, &((FlatPtr*)stack_ptr)[1], sizeof(FlatPtr), fault_at))
break;
recognized_symbols.append({ retaddr, symbolicate_kernel_address(retaddr) });
if (!safe_memcpy(&stack_ptr, (FlatPtr*)stack_ptr, sizeof(FlatPtr), fault_at))
break;
}
}
}
}
StringBuilder builder;
for (auto& symbol : recognized_symbols) {
if (!symbolicate(symbol, process, builder, elf_bundle.ptr()))
break;
}
return builder.to_string();
}
Vector<FlatPtr> Thread::raw_backtrace(FlatPtr ebp, FlatPtr eip) const
{
InterruptDisabler disabler;
auto& process = const_cast<Process&>(this->process());
ProcessPagingScope paging_scope(process);
Vector<FlatPtr, Profiling::max_stack_frame_count> backtrace;
backtrace.append(eip);
FlatPtr stack_ptr_copy;
FlatPtr stack_ptr = (FlatPtr)ebp;
while (stack_ptr) {
void* fault_at;
if (!safe_memcpy(&stack_ptr_copy, (void*)stack_ptr, sizeof(FlatPtr), fault_at))
break;
FlatPtr retaddr;
if (!safe_memcpy(&retaddr, (void*)(stack_ptr + sizeof(FlatPtr)), sizeof(FlatPtr), fault_at))
break;
backtrace.append(retaddr);
if (backtrace.size() == Profiling::max_stack_frame_count)
break;
stack_ptr = stack_ptr_copy;
}
return backtrace;
}
KResult Thread::make_thread_specific_region(Badge<Process>)
{
size_t thread_specific_region_alignment = max(process().m_master_tls_alignment, alignof(ThreadSpecificData));
m_thread_specific_region_size = align_up_to(process().m_master_tls_size, thread_specific_region_alignment) + sizeof(ThreadSpecificData);
auto* region = process().allocate_region({}, m_thread_specific_region_size, "Thread-specific", PROT_READ | PROT_WRITE, true);
if (!region)
return KResult(-ENOMEM);
SmapDisabler disabler;
auto* thread_specific_data = (ThreadSpecificData*)region->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment)).as_ptr();
auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment);
m_thread_specific_data = VirtualAddress(thread_specific_data);
thread_specific_data->self = thread_specific_data;
if (process().m_master_tls_size)
memcpy(thread_local_storage, process().m_master_tls_region.unsafe_ptr()->vaddr().as_ptr(), process().m_master_tls_size);
return KSuccess;
}
const LogStream& operator<<(const LogStream& stream, const Thread& value)
{
return stream << value.process().name() << "(" << value.pid().value() << ":" << value.tid().value() << ")";
}
Thread::BlockResult Thread::wait_on(WaitQueue& queue, const char* reason, const BlockTimeout& timeout, Atomic<bool>* lock, RefPtr<Thread> beneficiary)
{
auto* current_thread = Thread::current();
RefPtr<Timer> timer;
bool block_finished = false;
bool did_timeout = false;
bool did_unlock;
{
ScopedCritical critical;
// We need to be in a critical section *and* then also acquire the
// scheduler lock. The only way acquiring the scheduler lock could
// block us is if another core were to be holding it, in which case
// we need to wait until the scheduler lock is released again
{
ScopedSpinLock sched_lock(g_scheduler_lock);
if (!timeout.is_infinite()) {
timer = TimerQueue::the().add_timer_without_id(timeout.absolute_time(), [&]() {
// NOTE: this may execute on the same or any other processor!
ScopedSpinLock lock(g_scheduler_lock);
if (!block_finished) {
did_timeout = true;
wake_from_queue();
}
});
if (!timer) {
dbg() << "wait_on timed out before blocking";
// We timed out already, don't block
// The API contract guarantees we return with interrupts enabled,
// regardless of how we got called
critical.set_interrupt_flag_on_destruction(true);
return BlockResult::InterruptedByTimeout;
}
}
// m_queue can only be accessed safely if g_scheduler_lock is held!
m_queue = &queue;
if (!queue.enqueue(*current_thread)) {
// The WaitQueue was already requested to wake someone when
// nobody was waiting. So return right away as we shouldn't
// be waiting
// The API contract guarantees we return with interrupts enabled,
// regardless of how we got called
critical.set_interrupt_flag_on_destruction(true);
return BlockResult::NotBlocked;
}
did_unlock = unlock_process_if_locked();
if (lock)
*lock = false;
set_state(State::Queued);
m_wait_reason = reason;
// Yield and wait for the queue to wake us up again.
if (beneficiary)
Scheduler::donate_to(beneficiary, reason);
else
Scheduler::yield();
}
// We've unblocked, relock the process if needed and carry on.
relock_process(did_unlock);
// This looks counter productive, but we may not actually leave
// the critical section we just restored. It depends on whether
// we were in one while being called.
if (current_thread->should_die()) {
// We're being unblocked so that we can clean up. We shouldn't
// be in Dying state until we're about to return back to user mode
ASSERT(current_thread->state() == Thread::Running);
#ifdef THREAD_DEBUG
dbg() << "Dying thread " << *current_thread << " was unblocked";
#endif
}
}
BlockResult result(BlockResult::WokeNormally);
{
// To be able to look at m_wait_queue_node we once again need the
// scheduler lock, which is held when we insert into the queue
ScopedSpinLock sched_lock(g_scheduler_lock);
block_finished = true;
if (m_queue) {
ASSERT(m_queue == &queue);
// If our thread was still in the queue, we timed out
m_queue = nullptr;
if (queue.dequeue(*current_thread))
result = BlockResult::InterruptedByTimeout;
} else {
// Our thread was already removed from the queue. The only
// way this can happen if someone else is trying to kill us.
// In this case, the queue should not contain us anymore.
result = BlockResult::InterruptedByDeath;
}
}
if (timer && !did_timeout) {
// Cancel the timer while not holding any locks. This allows
// the timer function to complete before we remove it
// (e.g. if it's on another processor)
TimerQueue::the().cancel_timer(timer.release_nonnull());
}
// The API contract guarantees we return with interrupts enabled,
// regardless of how we got called
sti();
return result;
}
void Thread::wake_from_queue()
{
ScopedSpinLock lock(g_scheduler_lock);
ASSERT(state() == State::Queued);
m_wait_reason = nullptr;
if (this != Thread::current())
set_state(State::Runnable);
else
set_state(State::Running);
}
RefPtr<Thread> Thread::from_tid(ThreadID tid)
{
RefPtr<Thread> found_thread;
ScopedSpinLock lock(g_scheduler_lock);
Thread::for_each([&](auto& thread) {
if (thread.tid() == tid) {
found_thread = &thread;
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
return found_thread;
}
void Thread::reset_fpu_state()
{
memcpy(m_fpu_state, &Processor::current().clean_fpu_state(), sizeof(FPUState));
}
void Thread::start_tracing_from(ProcessID tracer)
{
m_tracer = ThreadTracer::create(tracer);
}
void Thread::stop_tracing()
{
m_tracer = nullptr;
}
void Thread::tracer_trap(const RegisterState& regs)
{
ASSERT(m_tracer.ptr());
m_tracer->set_regs(regs);
send_urgent_signal_to_self(SIGTRAP);
}
const Thread::Blocker& Thread::blocker() const
{
ASSERT(m_lock.own_lock());
ASSERT(m_blocker);
return *m_blocker;
}
}
|