summaryrefslogtreecommitdiff
path: root/Kernel/Syscalls/sigaction.cpp
blob: 33ea1b73e37c9782d58129a8e00ffc3af9f86011 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/*
 * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 * Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <Kernel/Arch/SmapDisabler.h>
#include <Kernel/InterruptDisabler.h>
#include <Kernel/Process.h>

namespace Kernel {

ErrorOr<FlatPtr> Process::sys$sigprocmask(int how, Userspace<sigset_t const*> set, Userspace<sigset_t*> old_set)
{
    VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
    TRY(require_promise(Pledge::sigaction));
    auto* current_thread = Thread::current();
    u32 previous_signal_mask;
    if (set) {
        auto set_value = TRY(copy_typed_from_user(set));
        switch (how) {
        case SIG_BLOCK:
            previous_signal_mask = current_thread->signal_mask_block(set_value, true);
            break;
        case SIG_UNBLOCK:
            previous_signal_mask = current_thread->signal_mask_block(set_value, false);
            break;
        case SIG_SETMASK:
            previous_signal_mask = current_thread->update_signal_mask(set_value);
            break;
        default:
            return EINVAL;
        }
    } else {
        previous_signal_mask = current_thread->signal_mask();
    }
    if (old_set) {
        TRY(copy_to_user(old_set, &previous_signal_mask));
    }
    return 0;
}

ErrorOr<FlatPtr> Process::sys$sigpending(Userspace<sigset_t*> set)
{
    VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
    TRY(require_promise(Pledge::stdio));
    auto pending_signals = Thread::current()->pending_signals();
    TRY(copy_to_user(set, &pending_signals));
    return 0;
}

ErrorOr<FlatPtr> Process::sys$sigaction(int signum, Userspace<sigaction const*> user_act, Userspace<sigaction*> user_old_act)
{
    VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
    TRY(require_promise(Pledge::sigaction));
    if (signum < 1 || signum >= NSIG || signum == SIGKILL || signum == SIGSTOP)
        return EINVAL;

    InterruptDisabler disabler; // FIXME: This should use a narrower lock. Maybe a way to ignore signals temporarily?
    auto& action = m_signal_action_data[signum];
    if (user_old_act) {
        sigaction old_act {};
        old_act.sa_flags = action.flags;
        old_act.sa_sigaction = reinterpret_cast<decltype(old_act.sa_sigaction)>(action.handler_or_sigaction.as_ptr());
        old_act.sa_mask = action.mask;
        TRY(copy_to_user(user_old_act, &old_act));
    }
    if (user_act) {
        auto act = TRY(copy_typed_from_user(user_act));
        action.mask = act.sa_mask;
        action.flags = act.sa_flags;
        action.handler_or_sigaction = VirtualAddress { reinterpret_cast<void*>(act.sa_sigaction) };
    }
    return 0;
}

ErrorOr<FlatPtr> Process::sys$sigreturn([[maybe_unused]] RegisterState& registers)
{
    VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
    TRY(require_promise(Pledge::stdio));
    SmapDisabler disabler;

    // Here, we restore the state pushed by dispatch signal and asm_signal_trampoline.
    auto stack_ptr = registers.userspace_sp();

    // Stack state (created by the signal trampoline):
    // saved_ax, ucontext, signal_info, fpu_state?.

#if ARCH(I386) || ARCH(X86_64)
    // The FPU state is at the top here, pop it off and restore it.
    // FIXME: The stack alignment is off by 8 bytes here, figure this out and remove this excessively aligned object.
    alignas(alignof(FPUState) * 2) FPUState data {};
    TRY(copy_from_user(&data, bit_cast<FPUState const*>(stack_ptr)));
    Thread::current()->fpu_state() = data;
    stack_ptr += sizeof(FPUState);
#endif

    stack_ptr += sizeof(siginfo); // We don't need this here.

    auto ucontext = TRY(copy_typed_from_user<__ucontext>(stack_ptr));
    stack_ptr += sizeof(__ucontext);

    auto saved_ax = TRY(copy_typed_from_user<FlatPtr>(stack_ptr));

    Thread::current()->m_signal_mask = ucontext.uc_sigmask;
    Thread::current()->m_currently_handled_signal = 0;
#if ARCH(X86_64)
    auto sp = registers.rsp;
#elif ARCH(I386)
    auto sp = registers.esp;
#endif

    copy_ptrace_registers_into_kernel_registers(registers, static_cast<PtraceRegisters const&>(ucontext.uc_mcontext));

#if ARCH(X86_64)
    registers.set_userspace_sp(registers.rsp);
    registers.rsp = sp;
#elif ARCH(I386)
    registers.set_userspace_sp(registers.esp);
    registers.esp = sp;
#endif

    return saved_ax;
}

ErrorOr<void> Process::remap_range_as_stack(FlatPtr address, size_t size)
{
    // FIXME: This duplicates a lot of logic from sys$mprotect, this should be abstracted out somehow
    auto range_to_remap = TRY(Memory::expand_range_to_page_boundaries(address, size));
    if (!range_to_remap.size())
        return EINVAL;

    if (!is_user_range(range_to_remap))
        return EFAULT;

    return address_space().with([&](auto& space) -> ErrorOr<void> {
        if (auto* whole_region = space->find_region_from_range(range_to_remap)) {
            if (!whole_region->is_mmap())
                return EPERM;
            if (!whole_region->vmobject().is_anonymous() || whole_region->is_shared())
                return EINVAL;
            whole_region->unsafe_clear_access();
            whole_region->set_readable(true);
            whole_region->set_writable(true);
            whole_region->set_stack(true);
            whole_region->set_syscall_region(false);
            whole_region->clear_to_zero();
            whole_region->remap();

            return {};
        }

        if (auto* old_region = space->find_region_containing(range_to_remap)) {
            if (!old_region->is_mmap())
                return EPERM;
            if (!old_region->vmobject().is_anonymous() || old_region->is_shared())
                return EINVAL;

            // Remove the old region from our regions tree, since were going to add another region
            // with the exact same start address.
            auto region = space->take_region(*old_region);
            region->unmap();

            // This vector is the region(s) adjacent to our range.
            // We need to allocate a new region for the range we wanted to change permission bits on.
            auto adjacent_regions = TRY(space->try_split_region_around_range(*region, range_to_remap));

            size_t new_range_offset_in_vmobject = region->offset_in_vmobject() + (range_to_remap.base().get() - region->range().base().get());
            auto* new_region = TRY(space->try_allocate_split_region(*region, range_to_remap, new_range_offset_in_vmobject));
            new_region->unsafe_clear_access();
            new_region->set_readable(true);
            new_region->set_writable(true);
            new_region->set_stack(true);
            new_region->set_syscall_region(false);
            new_region->clear_to_zero();

            // Map the new regions using our page directory (they were just allocated and don't have one).
            for (auto* adjacent_region : adjacent_regions) {
                TRY(adjacent_region->map(space->page_directory()));
            }
            TRY(new_region->map(space->page_directory()));

            return {};
        }

        if (auto const& regions = TRY(space->find_regions_intersecting(range_to_remap)); regions.size()) {
            size_t full_size_found = 0;
            // Check that all intersecting regions are compatible.
            for (auto const* region : regions) {
                if (!region->is_mmap())
                    return EPERM;
                if (!region->vmobject().is_anonymous() || region->is_shared())
                    return EINVAL;
                full_size_found += region->range().intersect(range_to_remap).size();
            }

            if (full_size_found != range_to_remap.size())
                return ENOMEM;

            // Finally, iterate over each region, either updating its access flags if the range covers it wholly,
            // or carving out a new subregion with the appropriate access flags set.
            for (auto* old_region : regions) {
                auto const intersection_to_remap = range_to_remap.intersect(old_region->range());
                // If the region is completely covered by range, simply update the access flags
                if (intersection_to_remap == old_region->range()) {
                    old_region->unsafe_clear_access();
                    old_region->set_readable(true);
                    old_region->set_writable(true);
                    old_region->set_stack(true);
                    old_region->set_syscall_region(false);
                    old_region->clear_to_zero();
                    old_region->remap();
                    continue;
                }
                // Remove the old region from our regions tree, since were going to add another region
                // with the exact same start address.
                auto region = space->take_region(*old_region);
                region->unmap();

                // This vector is the region(s) adjacent to our range.
                // We need to allocate a new region for the range we wanted to change permission bits on.
                auto adjacent_regions = TRY(space->try_split_region_around_range(*old_region, intersection_to_remap));

                // Since the range is not contained in a single region, it can only partially cover its starting and ending region,
                // therefore carving out a chunk from the region will always produce a single extra region, and not two.
                VERIFY(adjacent_regions.size() == 1);

                size_t new_range_offset_in_vmobject = old_region->offset_in_vmobject() + (intersection_to_remap.base().get() - old_region->range().base().get());
                auto* new_region = TRY(space->try_allocate_split_region(*region, intersection_to_remap, new_range_offset_in_vmobject));

                new_region->unsafe_clear_access();
                new_region->set_readable(true);
                new_region->set_writable(true);
                new_region->set_stack(true);
                new_region->set_syscall_region(false);
                new_region->clear_to_zero();

                // Map the new region using our page directory (they were just allocated and don't have one) if any.
                TRY(adjacent_regions[0]->map(space->page_directory()));

                TRY(new_region->map(space->page_directory()));
            }

            return {};
        }

        return EINVAL;
    });
}

ErrorOr<FlatPtr> Process::sys$sigaltstack(Userspace<stack_t const*> user_ss, Userspace<stack_t*> user_old_ss)
{
    VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
    TRY(require_promise(Pledge::sigaction));

    if (user_old_ss) {
        stack_t old_ss_value {};
        old_ss_value.ss_sp = (void*)Thread::current()->m_alternative_signal_stack;
        old_ss_value.ss_size = Thread::current()->m_alternative_signal_stack_size;
        old_ss_value.ss_flags = 0;
        if (!Thread::current()->has_alternative_signal_stack())
            old_ss_value.ss_flags = SS_DISABLE;
        else if (Thread::current()->is_in_alternative_signal_stack())
            old_ss_value.ss_flags = SS_ONSTACK;
        TRY(copy_to_user(user_old_ss, &old_ss_value));
    }

    if (user_ss) {
        auto ss = TRY(copy_typed_from_user(user_ss));

        if (Thread::current()->is_in_alternative_signal_stack())
            return EPERM;

        if (ss.ss_flags == SS_DISABLE) {
            Thread::current()->m_alternative_signal_stack_size = 0;
            Thread::current()->m_alternative_signal_stack = 0;
        } else if (ss.ss_flags == 0) {
            if (ss.ss_size <= MINSIGSTKSZ)
                return ENOMEM;
            if (Checked<FlatPtr>::addition_would_overflow((FlatPtr)ss.ss_sp, ss.ss_size))
                return ENOMEM;

            // In order to preserve compatibility with our MAP_STACK, W^X and syscall region
            // protections, sigaltstack ranges are carved out of their regions, zeroed, and
            // turned into read/writable MAP_STACK-enabled regions.
            // This is inspired by OpenBSD's solution: https://man.openbsd.org/sigaltstack.2
            TRY(remap_range_as_stack((FlatPtr)ss.ss_sp, ss.ss_size));

            Thread::current()->m_alternative_signal_stack = (FlatPtr)ss.ss_sp;
            Thread::current()->m_alternative_signal_stack_size = ss.ss_size;
        } else {
            return EINVAL;
        }
    }

    return 0;
}

// https://pubs.opengroup.org/onlinepubs/9699919799/functions/sigtimedwait.html
ErrorOr<FlatPtr> Process::sys$sigtimedwait(Userspace<sigset_t const*> set, Userspace<siginfo_t*> info, Userspace<timespec const*> timeout)
{
    VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
    TRY(require_promise(Pledge::sigaction));

    sigset_t set_value;
    TRY(copy_from_user(&set_value, set));

    Thread::BlockTimeout block_timeout = {};
    if (timeout) {
        auto timeout_time = TRY(copy_time_from_user(timeout));
        block_timeout = Thread::BlockTimeout(false, &timeout_time);
    }

    siginfo_t info_value = {};
    auto block_result = Thread::current()->block<Thread::SignalBlocker>(block_timeout, set_value, info_value);
    if (block_result.was_interrupted())
        return EINTR;
    // We check for an unset signal instead of directly checking for a timeout interruption
    // in order to allow polling the pending signals by setting the timeout to 0.
    if (info_value.si_signo == SIGINVAL) {
        VERIFY(block_result == Thread::BlockResult::InterruptedByTimeout);
        return EAGAIN;
    }

    if (info)
        TRY(copy_to_user(info, &info_value));
    return info_value.si_signo;
}

// https://pubs.opengroup.org/onlinepubs/9699919799/functions/sigsuspend.html
ErrorOr<FlatPtr> Process::sys$sigsuspend(Userspace<sigset_t const*> mask)
{
    VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);

    auto sigmask = TRY(copy_typed_from_user(mask));

    auto* current_thread = Thread::current();

    u32 previous_signal_mask = current_thread->update_signal_mask(sigmask);
    ScopeGuard rollback_signal_mask([&]() {
        current_thread->update_signal_mask(previous_signal_mask);
    });

    // TODO: Ensure that/check if we never return if the action is to terminate the process.
    // TODO: Ensure that/check if we only return after an eventual signal-catching function returns.
    Thread::BlockTimeout timeout = {};
    siginfo_t siginfo = {};
    if (current_thread->block<Thread::SignalBlocker>(timeout, ~sigmask, siginfo).was_interrupted())
        return EINTR;

    return 0;
}

}