summaryrefslogtreecommitdiff
path: root/Kernel/Syscalls/mmap.cpp
blob: 0616829628ada45d993f4d7f2397d264c4297d89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
/*
 * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 * Copyright (c) 2021, Leon Albrecht <leon2002.la@gmail.com>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <Kernel/Arch/x86/MSR.h>
#include <Kernel/Arch/x86/SmapDisabler.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/Memory/AnonymousVMObject.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/PageDirectory.h>
#include <Kernel/Memory/PrivateInodeVMObject.h>
#include <Kernel/Memory/Region.h>
#include <Kernel/Memory/SharedInodeVMObject.h>
#include <Kernel/PerformanceEventBuffer.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Process.h>
#include <LibC/limits.h>
#include <LibELF/Validation.h>

namespace Kernel {

static bool should_make_executable_exception_for_dynamic_loader(bool make_readable, bool make_writable, bool make_executable, Memory::Region const& region)
{
    // Normally we don't allow W -> X transitions, but we have to make an exception
    // for the dynamic loader, which needs to do this after performing text relocations.

    // FIXME: Investigate whether we could get rid of all text relocations entirely.

    // The exception is only made if all the following criteria is fulfilled:

    // The region must be RW
    if (!(region.is_readable() && region.is_writable() && !region.is_executable()))
        return false;

    // The region wants to become RX
    if (!(make_readable && !make_writable && make_executable))
        return false;

    // The region is backed by a file
    if (!region.vmobject().is_inode())
        return false;

    // The file mapping is private, not shared (no relocations in a shared mapping!)
    if (!region.vmobject().is_private_inode())
        return false;

    auto& inode_vm = static_cast<Memory::InodeVMObject const&>(region.vmobject());
    auto& inode = inode_vm.inode();

    ElfW(Ehdr) header;
    auto buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&header);
    auto result = inode.read_bytes(0, sizeof(header), buffer, nullptr);
    if (result.is_error() || result.value() != sizeof(header))
        return false;

    // The file is a valid ELF binary
    if (!ELF::validate_elf_header(header, inode.size()))
        return false;

    // The file is an ELF shared object
    if (header.e_type != ET_DYN)
        return false;

    // FIXME: Are there any additional checks/validations we could do here?
    return true;
}

static bool validate_mmap_prot(int prot, bool map_stack, bool map_anonymous, Memory::Region const* region = nullptr)
{
    bool make_readable = prot & PROT_READ;
    bool make_writable = prot & PROT_WRITE;
    bool make_executable = prot & PROT_EXEC;

    if (map_anonymous && make_executable)
        return false;

    if (make_writable && make_executable)
        return false;

    if (map_stack) {
        if (make_executable)
            return false;
        if (!make_readable || !make_writable)
            return false;
    }

    if (region) {
        if (make_writable && region->has_been_executable())
            return false;

        if (make_executable && region->has_been_writable()) {
            if (should_make_executable_exception_for_dynamic_loader(make_readable, make_writable, make_executable, *region))
                return true;

            return false;
        }
    }

    return true;
}

static bool validate_inode_mmap_prot(const Process& process, int prot, const Inode& inode, bool map_shared)
{
    auto metadata = inode.metadata();
    if ((prot & PROT_READ) && !metadata.may_read(process))
        return false;

    if (map_shared) {
        // FIXME: What about readonly filesystem mounts? We cannot make a
        // decision here without knowing the mount flags, so we would need to
        // keep a Custody or something from mmap time.
        if ((prot & PROT_WRITE) && !metadata.may_write(process))
            return false;
        if (auto shared_vmobject = inode.shared_vmobject()) {
            if ((prot & PROT_EXEC) && shared_vmobject->writable_mappings())
                return false;
            if ((prot & PROT_WRITE) && shared_vmobject->executable_mappings())
                return false;
        }
    }
    return true;
}

KResultOr<FlatPtr> Process::sys$mmap(Userspace<const Syscall::SC_mmap_params*> user_params)
{
    VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
    REQUIRE_PROMISE(stdio);
    auto params = TRY(copy_typed_from_user(user_params));

    FlatPtr addr = params.addr;
    auto size = params.size;
    auto alignment = params.alignment;
    auto prot = params.prot;
    auto flags = params.flags;
    auto fd = params.fd;
    auto offset = params.offset;

    if (prot & PROT_EXEC) {
        REQUIRE_PROMISE(prot_exec);
    }

    if (prot & MAP_FIXED) {
        REQUIRE_PROMISE(map_fixed);
    }

    if (alignment & ~PAGE_MASK)
        return EINVAL;

    if (Memory::page_round_up_would_wrap(size))
        return EINVAL;

    if (!Memory::is_user_range(VirtualAddress(addr), Memory::page_round_up(size)))
        return EFAULT;

    OwnPtr<KString> name;
    if (params.name.characters) {
        if (params.name.length > PATH_MAX)
            return ENAMETOOLONG;
        name = TRY(try_copy_kstring_from_user(params.name));
    }

    if (size == 0)
        return EINVAL;
    if ((FlatPtr)addr & ~PAGE_MASK)
        return EINVAL;

    bool map_shared = flags & MAP_SHARED;
    bool map_anonymous = flags & MAP_ANONYMOUS;
    bool map_private = flags & MAP_PRIVATE;
    bool map_stack = flags & MAP_STACK;
    bool map_fixed = flags & MAP_FIXED;
    bool map_noreserve = flags & MAP_NORESERVE;
    bool map_randomized = flags & MAP_RANDOMIZED;

    if (map_shared && map_private)
        return EINVAL;

    if (!map_shared && !map_private)
        return EINVAL;

    if (map_fixed && map_randomized)
        return EINVAL;

    if (!validate_mmap_prot(prot, map_stack, map_anonymous))
        return EINVAL;

    if (map_stack && (!map_private || !map_anonymous))
        return EINVAL;

    Memory::Region* region = nullptr;

    auto range = TRY([&]() -> KResultOr<Memory::VirtualRange> {
        if (map_randomized) {
            return address_space().page_directory().range_allocator().try_allocate_randomized(Memory::page_round_up(size), alignment);
        }
        auto range = address_space().try_allocate_range(VirtualAddress(addr), size, alignment);
        if (range.is_error()) {
            if (addr && !map_fixed) {
                // If there's an address but MAP_FIXED wasn't specified, the address is just a hint.
                range = address_space().try_allocate_range({}, size, alignment);
            }
        }
        return range;
    }());

    if (map_anonymous) {
        auto strategy = map_noreserve ? AllocationStrategy::None : AllocationStrategy::Reserve;
        RefPtr<Memory::AnonymousVMObject> vmobject;
        if (flags & MAP_PURGEABLE) {
            vmobject = TRY(Memory::AnonymousVMObject::try_create_purgeable_with_size(Memory::page_round_up(size), strategy));
        } else {
            vmobject = TRY(Memory::AnonymousVMObject::try_create_with_size(Memory::page_round_up(size), strategy));
        }

        region = TRY(address_space().allocate_region_with_vmobject(range, vmobject.release_nonnull(), 0, {}, prot, map_shared));
    } else {
        if (offset < 0)
            return EINVAL;
        if (static_cast<size_t>(offset) & ~PAGE_MASK)
            return EINVAL;
        auto description = TRY(fds().file_description(fd));
        if (description->is_directory())
            return ENODEV;
        // Require read access even when read protection is not requested.
        if (!description->is_readable())
            return EACCES;
        if (map_shared) {
            if ((prot & PROT_WRITE) && !description->is_writable())
                return EACCES;
        }
        if (description->inode()) {
            if (!validate_inode_mmap_prot(*this, prot, *description->inode(), map_shared))
                return EACCES;
        }

        region = TRY(description->mmap(*this, range, static_cast<u64>(offset), prot, map_shared));
    }

    if (!region)
        return ENOMEM;

    region->set_mmap(true);
    if (map_shared)
        region->set_shared(true);
    if (map_stack)
        region->set_stack(true);
    region->set_name(move(name));

    PerformanceManager::add_mmap_perf_event(*this, *region);

    return region->vaddr().get();
}

static KResultOr<Memory::VirtualRange> expand_range_to_page_boundaries(FlatPtr address, size_t size)
{
    if (Memory::page_round_up_would_wrap(size))
        return EINVAL;

    if ((address + size) < address)
        return EINVAL;

    if (Memory::page_round_up_would_wrap(address + size))
        return EINVAL;

    auto base = VirtualAddress { address }.page_base();
    auto end = Memory::page_round_up(address + size);

    return Memory::VirtualRange { base, end - base.get() };
}

KResultOr<FlatPtr> Process::sys$mprotect(Userspace<void*> addr, size_t size, int prot)
{
    VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
    REQUIRE_PROMISE(stdio);

    if (prot & PROT_EXEC) {
        REQUIRE_PROMISE(prot_exec);
    }

    auto range_to_mprotect = TRY(expand_range_to_page_boundaries(addr, size));
    if (!range_to_mprotect.size())
        return EINVAL;

    if (!is_user_range(range_to_mprotect))
        return EFAULT;

    if (auto* whole_region = address_space().find_region_from_range(range_to_mprotect)) {
        if (!whole_region->is_mmap())
            return EPERM;
        if (!validate_mmap_prot(prot, whole_region->is_stack(), whole_region->vmobject().is_anonymous(), whole_region))
            return EINVAL;
        if (whole_region->access() == Memory::prot_to_region_access_flags(prot))
            return 0;
        if (whole_region->vmobject().is_inode()
            && !validate_inode_mmap_prot(*this, prot, static_cast<Memory::InodeVMObject const&>(whole_region->vmobject()).inode(), whole_region->is_shared())) {
            return EACCES;
        }
        whole_region->set_readable(prot & PROT_READ);
        whole_region->set_writable(prot & PROT_WRITE);
        whole_region->set_executable(prot & PROT_EXEC);

        whole_region->remap();
        return 0;
    }

    // Check if we can carve out the desired range from an existing region
    if (auto* old_region = address_space().find_region_containing(range_to_mprotect)) {
        if (!old_region->is_mmap())
            return EPERM;
        if (!validate_mmap_prot(prot, old_region->is_stack(), old_region->vmobject().is_anonymous(), old_region))
            return EINVAL;
        if (old_region->access() == Memory::prot_to_region_access_flags(prot))
            return 0;
        if (old_region->vmobject().is_inode()
            && !validate_inode_mmap_prot(*this, prot, static_cast<Memory::InodeVMObject const&>(old_region->vmobject()).inode(), old_region->is_shared())) {
            return EACCES;
        }

        // Remove the old region from our regions tree, since were going to add another region
        // with the exact same start address, but do not deallocate it yet
        auto region = address_space().take_region(*old_region);

        // Unmap the old region here, specifying that we *don't* want the VM deallocated.
        region->unmap(Memory::Region::ShouldDeallocateVirtualRange::No);

        // This vector is the region(s) adjacent to our range.
        // We need to allocate a new region for the range we wanted to change permission bits on.
        auto adjacent_regions = TRY(address_space().try_split_region_around_range(*region, range_to_mprotect));

        size_t new_range_offset_in_vmobject = region->offset_in_vmobject() + (range_to_mprotect.base().get() - region->range().base().get());
        auto new_region = TRY(address_space().try_allocate_split_region(*region, range_to_mprotect, new_range_offset_in_vmobject));
        new_region->set_readable(prot & PROT_READ);
        new_region->set_writable(prot & PROT_WRITE);
        new_region->set_executable(prot & PROT_EXEC);

        // Map the new regions using our page directory (they were just allocated and don't have one).
        for (auto* adjacent_region : adjacent_regions) {
            TRY(adjacent_region->map(address_space().page_directory()));
        }
        TRY(new_region->map(address_space().page_directory()));
        return 0;
    }

    if (const auto& regions = address_space().find_regions_intersecting(range_to_mprotect); regions.size()) {
        size_t full_size_found = 0;
        // first check before doing anything
        for (const auto* region : regions) {
            if (!region->is_mmap())
                return EPERM;
            if (!validate_mmap_prot(prot, region->is_stack(), region->vmobject().is_anonymous(), region))
                return EINVAL;
            if (region->access() == Memory::prot_to_region_access_flags(prot))
                return 0;
            if (region->vmobject().is_inode()
                && !validate_inode_mmap_prot(*this, prot, static_cast<Memory::InodeVMObject const&>(region->vmobject()).inode(), region->is_shared())) {
                return EACCES;
            }
            full_size_found += region->range().intersect(range_to_mprotect).size();
        }

        if (full_size_found != range_to_mprotect.size())
            return ENOMEM;

        // then do all the other stuff
        for (auto* old_region : regions) {
            const auto intersection_to_mprotect = range_to_mprotect.intersect(old_region->range());
            // full sub region
            if (intersection_to_mprotect == old_region->range()) {
                old_region->set_readable(prot & PROT_READ);
                old_region->set_writable(prot & PROT_WRITE);
                old_region->set_executable(prot & PROT_EXEC);

                old_region->remap();
                continue;
            }
            // Remove the old region from our regions tree, since were going to add another region
            // with the exact same start address, but dont deallocate it yet
            auto region = address_space().take_region(*old_region);

            // Unmap the old region here, specifying that we *don't* want the VM deallocated.
            region->unmap(Memory::Region::ShouldDeallocateVirtualRange::No);

            // This vector is the region(s) adjacent to our range.
            // We need to allocate a new region for the range we wanted to change permission bits on.
            auto adjacent_regions = TRY(address_space().try_split_region_around_range(*old_region, intersection_to_mprotect));

            // there should only be one
            VERIFY(adjacent_regions.size() == 1);

            size_t new_range_offset_in_vmobject = old_region->offset_in_vmobject() + (intersection_to_mprotect.base().get() - old_region->range().base().get());
            auto* new_region = TRY(address_space().try_allocate_split_region(*region, intersection_to_mprotect, new_range_offset_in_vmobject));

            new_region->set_readable(prot & PROT_READ);
            new_region->set_writable(prot & PROT_WRITE);
            new_region->set_executable(prot & PROT_EXEC);

            // Map the new region using our page directory (they were just allocated and don't have one) if any.
            if (adjacent_regions.size())
                TRY(adjacent_regions[0]->map(address_space().page_directory()));

            TRY(new_region->map(address_space().page_directory()));
        }

        return 0;
    }

    return EINVAL;
}

KResultOr<FlatPtr> Process::sys$madvise(Userspace<void*> address, size_t size, int advice)
{
    VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
    REQUIRE_PROMISE(stdio);

    auto range_to_madvise = TRY(expand_range_to_page_boundaries(address, size));

    if (!range_to_madvise.size())
        return EINVAL;

    if (!is_user_range(range_to_madvise))
        return EFAULT;

    auto* region = address_space().find_region_from_range(range_to_madvise);
    if (!region)
        return EINVAL;
    if (!region->is_mmap())
        return EPERM;
    bool set_volatile = advice & MADV_SET_VOLATILE;
    bool set_nonvolatile = advice & MADV_SET_NONVOLATILE;
    if (set_volatile && set_nonvolatile)
        return EINVAL;
    if (set_volatile || set_nonvolatile) {
        if (!region->vmobject().is_anonymous())
            return EINVAL;
        auto& vmobject = static_cast<Memory::AnonymousVMObject&>(region->vmobject());
        if (!vmobject.is_purgeable())
            return EINVAL;
        bool was_purged = false;
        TRY(vmobject.set_volatile(set_volatile, was_purged));
        return was_purged ? 1 : 0;
    }
    return EINVAL;
}

KResultOr<FlatPtr> Process::sys$set_mmap_name(Userspace<const Syscall::SC_set_mmap_name_params*> user_params)
{
    VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
    REQUIRE_PROMISE(stdio);
    auto params = TRY(copy_typed_from_user(user_params));

    if (params.name.length > PATH_MAX)
        return ENAMETOOLONG;

    auto name = TRY(try_copy_kstring_from_user(params.name));
    auto range = TRY(expand_range_to_page_boundaries((FlatPtr)params.addr, params.size));

    auto* region = address_space().find_region_from_range(range);
    if (!region)
        return EINVAL;
    if (!region->is_mmap())
        return EPERM;

    region->set_name(move(name));
    PerformanceManager::add_mmap_perf_event(*this, *region);

    return 0;
}

KResultOr<FlatPtr> Process::sys$munmap(Userspace<void*> addr, size_t size)
{
    VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
    REQUIRE_PROMISE(stdio);
    return address_space().unmap_mmap_range(VirtualAddress { addr }, size);
}

KResultOr<FlatPtr> Process::sys$mremap(Userspace<const Syscall::SC_mremap_params*> user_params)
{
    VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
    REQUIRE_PROMISE(stdio);
    auto params = TRY(copy_typed_from_user(user_params));

    auto old_range = TRY(expand_range_to_page_boundaries((FlatPtr)params.old_address, params.old_size));

    auto* old_region = address_space().find_region_from_range(old_range);
    if (!old_region)
        return EINVAL;

    if (!old_region->is_mmap())
        return EPERM;

    if (old_region->vmobject().is_shared_inode() && params.flags & MAP_PRIVATE && !(params.flags & (MAP_ANONYMOUS | MAP_NORESERVE))) {
        auto range = old_region->range();
        auto old_prot = region_access_flags_to_prot(old_region->access());
        auto old_offset = old_region->offset_in_vmobject();
        NonnullRefPtr inode = static_cast<Memory::SharedInodeVMObject&>(old_region->vmobject()).inode();

        auto new_vmobject = Memory::PrivateInodeVMObject::try_create_with_inode(inode);
        if (!new_vmobject)
            return ENOMEM;

        auto old_name = old_region->take_name();

        // Unmap without deallocating the VM range since we're going to reuse it.
        old_region->unmap(Memory::Region::ShouldDeallocateVirtualRange::No);
        address_space().deallocate_region(*old_region);

        auto new_region = TRY(address_space().allocate_region_with_vmobject(range, new_vmobject.release_nonnull(), old_offset, old_name->view(), old_prot, false));
        new_region->set_mmap(true);
        return new_region->vaddr().get();
    }

    dbgln("sys$mremap: Unimplemented remap request (flags={})", params.flags);
    return ENOTIMPL;
}

KResultOr<FlatPtr> Process::sys$allocate_tls(Userspace<const char*> initial_data, size_t size)
{
    VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
    REQUIRE_PROMISE(stdio);

    if (!size || size % PAGE_SIZE != 0)
        return EINVAL;

    if (!m_master_tls_region.is_null())
        return EEXIST;

    if (thread_count() != 1)
        return EFAULT;

    Thread* main_thread = nullptr;
    bool multiple_threads = false;
    for_each_thread([&main_thread, &multiple_threads](auto& thread) {
        if (main_thread)
            multiple_threads = true;
        main_thread = &thread;
        return IterationDecision::Break;
    });
    VERIFY(main_thread);

    if (multiple_threads)
        return EINVAL;

    auto range = TRY(address_space().try_allocate_range({}, size));
    auto region = TRY(address_space().allocate_region(range, String("Master TLS"), PROT_READ | PROT_WRITE));

    m_master_tls_region = region->make_weak_ptr();
    m_master_tls_size = size;
    m_master_tls_alignment = PAGE_SIZE;

    {
        Kernel::SmapDisabler disabler;
        void* fault_at;
        if (!Kernel::safe_memcpy((char*)m_master_tls_region.unsafe_ptr()->vaddr().as_ptr(), (char*)initial_data.ptr(), size, fault_at))
            return EFAULT;
    }

    TRY(main_thread->make_thread_specific_region({}));

#if ARCH(I386)
    auto& tls_descriptor = Processor::current().get_gdt_entry(GDT_SELECTOR_TLS);
    tls_descriptor.set_base(main_thread->thread_specific_data());
    tls_descriptor.set_limit(main_thread->thread_specific_region_size());
#else
    MSR fs_base_msr(MSR_FS_BASE);
    fs_base_msr.set(main_thread->thread_specific_data().get());
#endif

    return m_master_tls_region.unsafe_ptr()->vaddr().get();
}

KResultOr<FlatPtr> Process::sys$msyscall(Userspace<void*> address)
{
    VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this)
    if (address_space().enforces_syscall_regions())
        return EPERM;

    if (!address) {
        address_space().set_enforces_syscall_regions(true);
        return 0;
    }

    if (!Memory::is_user_address(VirtualAddress { address }))
        return EFAULT;

    auto* region = address_space().find_region_containing(Memory::VirtualRange { VirtualAddress { address }, 1 });
    if (!region)
        return EINVAL;

    if (!region->is_mmap())
        return EINVAL;

    region->set_syscall_region(true);
    return 0;
}
}