summaryrefslogtreecommitdiff
path: root/Kernel/Syscalls/execve.cpp
blob: 9fbd7c1a97519f265bc845993a5a0619e1030bd7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
/*
 * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <AK/LexicalPath.h>
#include <AK/ScopeGuard.h>
#include <AK/TemporaryChange.h>
#include <Kernel/FileSystem/Custody.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/Process.h>
#include <Kernel/Profiling.h>
#include <Kernel/Random.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/PageDirectory.h>
#include <Kernel/VM/Region.h>
#include <Kernel/VM/SharedInodeVMObject.h>
#include <LibC/limits.h>
#include <LibELF/Loader.h>
#include <LibELF/Validation.h>

//#define EXEC_DEBUG
//#define MM_DEBUG

namespace Kernel {

static bool validate_stack_size(const Vector<String>& arguments, const Vector<String>& environment)
{
    size_t total_blob_size = 0;
    for (auto& a : arguments)
        total_blob_size += a.length() + 1;
    for (auto& e : environment)
        total_blob_size += e.length() + 1;

    size_t total_meta_size = sizeof(char*) * (arguments.size() + 1) + sizeof(char*) * (environment.size() + 1);

    // FIXME: This doesn't account for the size of the auxiliary vector
    return (total_blob_size + total_meta_size) < Thread::default_userspace_stack_size;
}

KResultOr<Process::LoadResult> Process::load_elf_object(FileDescription& object_description, FlatPtr load_offset, ShouldAllocateTls should_allocate_tls)
{
    auto& inode = *(object_description.inode());
    auto vmobject = SharedInodeVMObject::create_with_inode(inode);
    if (static_cast<const SharedInodeVMObject&>(*vmobject).writable_mappings()) {
        dbg() << "Refusing to execute a write-mapped program";
        return KResult(-ETXTBSY);
    }
    InodeMetadata loader_metadata = object_description.metadata();

    auto region = MM.allocate_kernel_region_with_vmobject(*vmobject, PAGE_ROUND_UP(loader_metadata.size), "ELF loading", Region::Access::Read);
    if (!region) {
        dbg() << "Could not allocate memory for ELF loading";
        return KResult(-ENOMEM);
    }

    Region* master_tls_region { nullptr };
    size_t master_tls_size = 0;
    size_t master_tls_alignment = 0;
    m_entry_eip = 0;
    FlatPtr load_base_address = 0;

    MM.enter_process_paging_scope(*this);
    String object_name = LexicalPath(object_description.absolute_path()).basename();
    RefPtr<ELF::Loader> loader = ELF::Loader::create(region->vaddr().as_ptr(), loader_metadata.size, move(object_name));
    loader->map_section_hook = [&](VirtualAddress vaddr, size_t size, size_t alignment, size_t offset_in_image, bool is_readable, bool is_writable, bool is_executable, const String& name) -> u8* {
        ASSERT(size);
        ASSERT(alignment == PAGE_SIZE);
        int prot = 0;
        if (is_readable)
            prot |= PROT_READ;
        if (is_writable)
            prot |= PROT_WRITE;
        if (is_executable)
            prot |= PROT_EXEC;
        if (auto* region = allocate_region_with_vmobject(vaddr.offset(load_offset), size, *vmobject, offset_in_image, String(name), prot)) {
            region->set_shared(true);
            if (offset_in_image == 0)
                load_base_address = (FlatPtr)region->vaddr().as_ptr();
            return region->vaddr().as_ptr();
        }
        return nullptr;
    };
    loader->alloc_section_hook = [&](VirtualAddress vaddr, size_t size, size_t alignment, bool is_readable, bool is_writable, const String& name) -> u8* {
        ASSERT(size);
        ASSERT(alignment == PAGE_SIZE);
        int prot = 0;
        if (is_readable)
            prot |= PROT_READ;
        if (is_writable)
            prot |= PROT_WRITE;
        if (auto* region = allocate_region(vaddr.offset(load_offset), size, String(name), prot))
            return region->vaddr().as_ptr();
        return nullptr;
    };
    if (should_allocate_tls == ShouldAllocateTls::Yes) {
        loader->tls_section_hook = [&](size_t size, size_t alignment) {
            ASSERT(size);
            master_tls_region = allocate_region({}, size, String(), PROT_READ | PROT_WRITE);
            master_tls_size = size;
            master_tls_alignment = alignment;
            return master_tls_region->vaddr().as_ptr();
        };
    }

    ASSERT(!Processor::current().in_critical());
    bool success = loader->load();
    if (!success) {
        klog() << "do_exec: Failure loading program";
        return KResult(-ENOEXEC);
    }

    if (!loader->entry().offset(load_offset).get()) {
        klog() << "do_exec: Failure loading program, entry pointer is invalid! (" << loader->entry().offset(load_offset) << ")";
        return KResult(-ENOEXEC);
    }

    // NOTE: At this point, we've committed to the new executable.

    return LoadResult {
        load_base_address,
        loader->entry().offset(load_offset).get(),
        (size_t)loader_metadata.size,
        VirtualAddress(loader->image().program_header_table_offset()).offset(load_offset).get(),
        loader->image().program_header_count(),
        master_tls_region ? master_tls_region->make_weak_ptr() : nullptr,
        master_tls_size,
        master_tls_alignment
    };
}

int Process::load(NonnullRefPtr<FileDescription> main_program_description, RefPtr<FileDescription> interpreter_description)
{
    RefPtr<PageDirectory> old_page_directory;
    NonnullOwnPtrVector<Region> old_regions;

    {
        // Need to make sure we don't swap contexts in the middle
        ScopedCritical critical;
        old_page_directory = move(m_page_directory);
        old_regions = move(m_regions);
        m_page_directory = PageDirectory::create_for_userspace(*this);
    }

    ArmedScopeGuard rollback_regions_guard([&]() {
        ASSERT(Process::current() == this);
        // Need to make sure we don't swap contexts in the middle
        ScopedCritical critical;
        m_page_directory = move(old_page_directory);
        m_regions = move(old_regions);
        MM.enter_process_paging_scope(*this);
    });

    if (!interpreter_description) {
        auto result = load_elf_object(main_program_description, FlatPtr { 0 }, ShouldAllocateTls::Yes);
        if (result.is_error())
            return result.error();

        m_load_base = result.value().load_base;
        m_entry_eip = result.value().entry_eip;
        m_master_tls_region = result.value().tls_region;
        m_master_tls_size = result.value().tls_size;
        m_master_tls_alignment = result.value().tls_alignment;

        rollback_regions_guard.disarm();
        return 0;
    }

    // TODO: This should be randomized for ASLR
    constexpr FlatPtr interpreter_load_offset = 0x08000000;

    auto interpreter_load_result = load_elf_object(*interpreter_description, interpreter_load_offset, ShouldAllocateTls::No);
    if (interpreter_load_result.is_error())
        return interpreter_load_result.error();

    m_load_base = interpreter_load_result.value().load_base;
    m_entry_eip = interpreter_load_result.value().entry_eip;

    // TLS allocation will be done in userspace by the loader
    m_master_tls_region = nullptr;
    m_master_tls_size = 0;
    m_master_tls_alignment = 0;

    rollback_regions_guard.disarm();
    return 0;
}

int Process::do_exec(NonnullRefPtr<FileDescription> main_program_description, Vector<String> arguments, Vector<String> environment, RefPtr<FileDescription> interpreter_description, Thread*& new_main_thread, u32& prev_flags)
{
    ASSERT(is_user_process());
    ASSERT(!Processor::current().in_critical());
    auto path = main_program_description->absolute_path();
#ifdef EXEC_DEBUG
    dbg() << "do_exec(" << path << ")";
#endif

    // FIXME: How much stack space does process startup need?
    if (!validate_stack_size(arguments, environment))
        return -E2BIG;

    auto parts = path.split('/');
    if (parts.is_empty())
        return -ENOENT;

    // Disable profiling temporarily in case it's running on this process.
    bool was_profiling = is_profiling();
    TemporaryChange profiling_disabler(m_profiling, false);

    // Mark this thread as the current thread that does exec
    // No other thread from this process will be scheduled to run
    auto current_thread = Thread::current();
    m_exec_tid = current_thread->tid();

#ifdef MM_DEBUG
    dbg() << "Process " << pid().value() << " exec: PD=" << m_page_directory.ptr() << " created";
#endif

    int load_rc = load(main_program_description, interpreter_description);
    if (load_rc) {
        klog() << "do_exec: Failed to load main program or interpreter";
        return load_rc;
    }

    kill_threads_except_self();

#ifdef EXEC_DEBUG
    klog() << "Memory layout after ELF load:";
    dump_regions();
#endif

    m_executable = main_program_description->custody();

    m_promises = m_execpromises;

    m_veil_state = VeilState::None;
    m_unveiled_paths.clear();

    auto main_program_metadata = main_program_description->metadata();

    if (!(main_program_description->custody()->mount_flags() & MS_NOSUID)) {
        if (main_program_metadata.is_setuid())
            m_euid = m_suid = main_program_metadata.uid;
        if (main_program_metadata.is_setgid())
            m_egid = m_sgid = main_program_metadata.gid;
    }

    current_thread->set_default_signal_dispositions();
    current_thread->clear_signals();

    m_futex_queues.clear();

    m_region_lookup_cache = {};

    disown_all_shared_buffers();

    for (size_t i = 0; i < m_fds.size(); ++i) {
        auto& description_and_flags = m_fds[i];
        if (description_and_flags.description() && description_and_flags.flags() & FD_CLOEXEC)
            description_and_flags = {};
    }

    if (interpreter_description) {
        m_main_program_fd = alloc_fd();
        ASSERT(m_main_program_fd >= 0);
        main_program_description->seek(0, SEEK_SET);
        main_program_description->set_readable(true);
        m_fds[m_main_program_fd].set(move(main_program_description), FD_CLOEXEC);
    }

    new_main_thread = nullptr;
    if (&current_thread->process() == this) {
        new_main_thread = current_thread;
    } else {
        for_each_thread([&](auto& thread) {
            new_main_thread = &thread;
            return IterationDecision::Break;
        });
    }
    ASSERT(new_main_thread);

    auto auxv = generate_auxiliary_vector();

    // NOTE: We create the new stack before disabling interrupts since it will zero-fault
    //       and we don't want to deal with faults after this point.
    auto make_stack_result = new_main_thread->make_userspace_stack_for_main_thread(move(arguments), move(environment), move(auxv));
    if (make_stack_result.is_error())
        return make_stack_result.error();
    u32 new_userspace_esp = make_stack_result.value();

    if (wait_for_tracer_at_next_execve())
        Thread::current()->send_urgent_signal_to_self(SIGSTOP);

    // We enter a critical section here because we don't want to get interrupted between do_exec()
    // and Processor::assume_context() or the next context switch.
    // If we used an InterruptDisabler that sti()'d on exit, we might timer tick'd too soon in exec().
    Processor::current().enter_critical(prev_flags);

    // NOTE: Be careful to not trigger any page faults below!

    m_name = parts.take_last();
    new_main_thread->set_name(m_name);

    // FIXME: PID/TID ISSUE
    m_pid = new_main_thread->tid().value();
    auto tsr_result = new_main_thread->make_thread_specific_region({});
    if (tsr_result.is_error())
        return tsr_result.error();
    new_main_thread->reset_fpu_state();

    auto& tss = new_main_thread->m_tss;
    tss.cs = GDT_SELECTOR_CODE3 | 3;
    tss.ds = GDT_SELECTOR_DATA3 | 3;
    tss.es = GDT_SELECTOR_DATA3 | 3;
    tss.ss = GDT_SELECTOR_DATA3 | 3;
    tss.fs = GDT_SELECTOR_DATA3 | 3;
    tss.gs = GDT_SELECTOR_TLS | 3;
    tss.eip = m_entry_eip;
    tss.esp = new_userspace_esp;
    tss.cr3 = m_page_directory->cr3();
    tss.ss2 = m_pid.value();

    if (was_profiling)
        Profiling::did_exec(path);

    {
        ScopedSpinLock lock(g_scheduler_lock);
        new_main_thread->set_state(Thread::State::Runnable);
    }
    big_lock().force_unlock_if_locked();
    ASSERT_INTERRUPTS_DISABLED();
    ASSERT(Processor::current().in_critical());
    return 0;
}

Vector<AuxiliaryValue> Process::generate_auxiliary_vector() const
{
    Vector<AuxiliaryValue> auxv;
    // PHDR/EXECFD
    // PH*
    auxv.append({ AuxiliaryValue::PageSize, PAGE_SIZE });
    auxv.append({ AuxiliaryValue::BaseAddress, (void*)m_load_base });

    auxv.append({ AuxiliaryValue::Entry, (void*)m_entry_eip });
    // NOTELF
    auxv.append({ AuxiliaryValue::Uid, (long)m_uid });
    auxv.append({ AuxiliaryValue::EUid, (long)m_euid });
    auxv.append({ AuxiliaryValue::Gid, (long)m_gid });
    auxv.append({ AuxiliaryValue::EGid, (long)m_egid });

    // FIXME: Don't hard code this? We might support other platforms later.. (e.g. x86_64)
    auxv.append({ AuxiliaryValue::Platform, "i386" });
    // FIXME: This is platform specific
    auxv.append({ AuxiliaryValue::HwCap, (long)CPUID(1).edx() });

    auxv.append({ AuxiliaryValue::ClockTick, (long)TimeManagement::the().ticks_per_second() });

    // FIXME: Also take into account things like extended filesystem permissions? That's what linux does...
    auxv.append({ AuxiliaryValue::Secure, ((m_uid != m_euid) || (m_gid != m_egid)) ? 1 : 0 });

    char random_bytes[16] {};
    get_fast_random_bytes((u8*)random_bytes, sizeof(random_bytes));

    auxv.append({ AuxiliaryValue::Random, String(random_bytes, sizeof(random_bytes)) });

    auxv.append({ AuxiliaryValue::ExecFilename, m_executable->absolute_path() });

    auxv.append({ AuxiliaryValue::ExecFileDescriptor, m_main_program_fd });

    auxv.append({ AuxiliaryValue::Null, 0L });
    return auxv;
}

static KResultOr<Vector<String>> find_shebang_interpreter_for_executable(const char first_page[], int nread)
{
    int word_start = 2;
    int word_length = 0;
    if (nread > 2 && first_page[0] == '#' && first_page[1] == '!') {
        Vector<String> interpreter_words;

        for (int i = 2; i < nread; ++i) {
            if (first_page[i] == '\n') {
                break;
            }

            if (first_page[i] != ' ') {
                ++word_length;
            }

            if (first_page[i] == ' ') {
                if (word_length > 0) {
                    interpreter_words.append(String(&first_page[word_start], word_length));
                }
                word_length = 0;
                word_start = i + 1;
            }
        }

        if (word_length > 0)
            interpreter_words.append(String(&first_page[word_start], word_length));

        if (!interpreter_words.is_empty())
            return interpreter_words;
    }

    return KResult(-ENOEXEC);
}

KResultOr<NonnullRefPtr<FileDescription>> Process::find_elf_interpreter_for_executable(const String& path, char (&first_page)[PAGE_SIZE], int nread, size_t file_size)
{
    if (nread < (int)sizeof(Elf32_Ehdr))
        return KResult(-ENOEXEC);

    auto elf_header = (Elf32_Ehdr*)first_page;
    if (!ELF::validate_elf_header(*elf_header, file_size)) {
        dbg() << "exec(" << path << "): File has invalid ELF header";
        return KResult(-ENOEXEC);
    }

    // Not using KResultOr here because we'll want to do the same thing in userspace in the RTLD
    String interpreter_path;
    if (!ELF::validate_program_headers(*elf_header, file_size, (u8*)first_page, nread, &interpreter_path)) {
        dbg() << "exec(" << path << "): File has invalid ELF Program headers";
        return KResult(-ENOEXEC);
    }

    if (!interpreter_path.is_empty()) {
        // Programs with an interpreter better be relocatable executables or we don't know what to do...
        if (elf_header->e_type != ET_DYN)
            return KResult(-ENOEXEC);

        dbg() << "exec(" << path << "): Using program interpreter " << interpreter_path;
        auto interp_result = VFS::the().open(interpreter_path, O_EXEC, 0, current_directory());
        if (interp_result.is_error()) {
            dbg() << "exec(" << path << "): Unable to open program interpreter " << interpreter_path;
            return interp_result.error();
        }
        auto interpreter_description = interp_result.value();
        auto interp_metadata = interpreter_description->metadata();

        ASSERT(interpreter_description->inode());

        // Validate the program interpreter as a valid elf binary.
        // If your program interpreter is a #! file or something, it's time to stop playing games :)
        if (interp_metadata.size < (int)sizeof(Elf32_Ehdr))
            return KResult(-ENOEXEC);

        memset(first_page, 0, sizeof(first_page));
        auto first_page_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&first_page);
        auto nread_or_error = interpreter_description->read(first_page_buffer, sizeof(first_page));
        if (nread_or_error.is_error())
            return KResult(-ENOEXEC);
        nread = nread_or_error.value();

        if (nread < (int)sizeof(Elf32_Ehdr))
            return KResult(-ENOEXEC);

        elf_header = (Elf32_Ehdr*)first_page;
        if (!ELF::validate_elf_header(*elf_header, interp_metadata.size)) {
            dbg() << "exec(" << path << "): Interpreter (" << interpreter_description->absolute_path() << ") has invalid ELF header";
            return KResult(-ENOEXEC);
        }

        // Not using KResultOr here because we'll want to do the same thing in userspace in the RTLD
        String interpreter_interpreter_path;
        if (!ELF::validate_program_headers(*elf_header, interp_metadata.size, (u8*)first_page, nread, &interpreter_interpreter_path)) {
            dbg() << "exec(" << path << "): Interpreter (" << interpreter_description->absolute_path() << ") has invalid ELF Program headers";
            return KResult(-ENOEXEC);
        }

        // FIXME: Uncomment this
        //        How do we get gcc to not insert an interpreter section to /usr/lib/Loader.so itself?
        // if (!interpreter_interpreter_path.is_empty()) {
        //     dbg() << "exec(" << path << "): Interpreter (" << interpreter_description->absolute_path() << ") has its own interpreter (" << interpreter_interpreter_path << ")! No thank you!";
        //     return KResult(-ELOOP);
        // }

        return interpreter_description;
    }

    if (elf_header->e_type != ET_EXEC) {
        // We can't exec an ET_REL, that's just an object file from the compiler
        // If it's ET_DYN with no PT_INTERP, then we can't load it properly either
        return KResult(-ENOEXEC);
    }

    // No interpreter, but, path refers to a valid elf image
    return KResult(KSuccess);
}

int Process::exec(String path, Vector<String> arguments, Vector<String> environment, int recursion_depth)
{
    if (recursion_depth > 2) {
        dbg() << "exec(" << path << "): SHENANIGANS! recursed too far trying to find #! interpreter";
        return -ELOOP;
    }

    // Open the file to check what kind of binary format it is
    // Currently supported formats:
    //    - #! interpreted file
    //    - ELF32
    //        * ET_EXEC binary that just gets loaded
    //        * ET_DYN binary that requires a program interpreter
    //
    auto result = VFS::the().open(path, O_EXEC, 0, current_directory());
    if (result.is_error())
        return result.error();
    auto description = result.release_value();
    auto metadata = description->metadata();

    // Always gonna need at least 3 bytes. these are for #!X
    if (metadata.size < 3)
        return -ENOEXEC;

    ASSERT(description->inode());

    // Read the first page of the program into memory so we can validate the binfmt of it
    char first_page[PAGE_SIZE];
    auto first_page_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&first_page);
    auto nread_or_error = description->read(first_page_buffer, sizeof(first_page));
    if (nread_or_error.is_error())
        return -ENOEXEC;

    // 1) #! interpreted file
    auto shebang_result = find_shebang_interpreter_for_executable(first_page, nread_or_error.value());
    if (!shebang_result.is_error()) {
        Vector<String> new_arguments(shebang_result.value());

        new_arguments.append(path);

        arguments.remove(0);
        new_arguments.append(move(arguments));

        return exec(shebang_result.value().first(), move(new_arguments), move(environment), ++recursion_depth);
    }

    // #2) ELF32 for i386
    auto elf_result = find_elf_interpreter_for_executable(path, first_page, nread_or_error.value(), metadata.size);
    RefPtr<FileDescription> interpreter_description;
    // We're getting either an interpreter, an error, or KSuccess (i.e. no interpreter but file checks out)
    if (!elf_result.is_error())
        interpreter_description = elf_result.value();
    else if (elf_result.error().is_error())
        return elf_result.error();

    // The bulk of exec() is done by do_exec(), which ensures that all locals
    // are cleaned up by the time we yield-teleport below.
    Thread* new_main_thread = nullptr;
    u32 prev_flags = 0;
    int rc = do_exec(move(description), move(arguments), move(environment), move(interpreter_description), new_main_thread, prev_flags);

    m_exec_tid = 0;

    if (rc < 0)
        return rc;

    ASSERT_INTERRUPTS_DISABLED();
    ASSERT(Processor::current().in_critical());

    auto current_thread = Thread::current();
    if (current_thread == new_main_thread) {
        // We need to enter the scheduler lock before changing the state
        // and it will be released after the context switch into that
        // thread. We should also still be in our critical section
        ASSERT(!g_scheduler_lock.own_lock());
        ASSERT(Processor::current().in_critical() == 1);
        g_scheduler_lock.lock();
        current_thread->set_state(Thread::State::Running);
        Processor::assume_context(*current_thread, prev_flags);
        ASSERT_NOT_REACHED();
    }

    Processor::current().leave_critical(prev_flags);
    return 0;
}

int Process::sys$execve(Userspace<const Syscall::SC_execve_params*> user_params)
{
    REQUIRE_PROMISE(exec);

    // NOTE: Be extremely careful with allocating any kernel memory in exec().
    //       On success, the kernel stack will be lost.
    Syscall::SC_execve_params params;
    if (!copy_from_user(&params, user_params))
        return -EFAULT;

    if (params.arguments.length > ARG_MAX || params.environment.length > ARG_MAX)
        return -E2BIG;

    String path;
    {
        auto path_arg = get_syscall_path_argument(params.path);
        if (path_arg.is_error())
            return path_arg.error();
        path = path_arg.value();
    }

    auto copy_user_strings = [](const auto& list, auto& output) {
        if (!list.length)
            return true;
        Checked size = sizeof(list.length);
        size *= list.length;
        if (size.has_overflow())
            return false;
        Vector<Syscall::StringArgument, 32> strings;
        strings.resize(list.length);
        if (!copy_from_user(strings.data(), list.strings, list.length * sizeof(Syscall::StringArgument)))
            return false;
        for (size_t i = 0; i < list.length; ++i) {
            auto string = copy_string_from_user(strings[i]);
            if (string.is_null())
                return false;
            output.append(move(string));
        }
        return true;
    };

    Vector<String> arguments;
    if (!copy_user_strings(params.arguments, arguments))
        return -EFAULT;

    Vector<String> environment;
    if (!copy_user_strings(params.environment, environment))
        return -EFAULT;

    int rc = exec(move(path), move(arguments), move(environment));
    ASSERT(rc < 0); // We should never continue after a successful exec!
    return rc;
}

}