summaryrefslogtreecommitdiff
path: root/Kernel/Syscalls/execve.cpp
blob: 32c81c896de0b33884dd172eea8b4e63d581d9ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
/*
 * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/ScopeGuard.h>
#include <AK/TemporaryChange.h>
#include <AK/WeakPtr.h>
#include <Kernel/Debug.h>
#include <Kernel/FileSystem/Custody.h>
#include <Kernel/FileSystem/OpenFileDescription.h>
#include <Kernel/Memory/AllocationStrategy.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/PageDirectory.h>
#include <Kernel/Memory/Region.h>
#include <Kernel/Memory/SharedInodeVMObject.h>
#include <Kernel/Panic.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Process.h>
#include <Kernel/Random.h>
#include <Kernel/Time/TimeManagement.h>
#include <LibC/limits.h>
#include <LibELF/AuxiliaryVector.h>
#include <LibELF/Image.h>
#include <LibELF/Validation.h>

namespace Kernel {

extern Memory::Region* g_signal_trampoline_region;

struct LoadResult {
    OwnPtr<Memory::AddressSpace> space;
    FlatPtr load_base { 0 };
    FlatPtr entry_eip { 0 };
    size_t size { 0 };
    WeakPtr<Memory::Region> tls_region;
    size_t tls_size { 0 };
    size_t tls_alignment { 0 };
    WeakPtr<Memory::Region> stack_region;
};

static Vector<ELF::AuxiliaryValue> generate_auxiliary_vector(FlatPtr load_base, FlatPtr entry_eip, UserID uid, UserID euid, GroupID gid, GroupID egid, StringView executable_path, Optional<Process::ScopedDescriptionAllocation> const& main_program_fd_allocation);

static bool validate_stack_size(NonnullOwnPtrVector<KString> const& arguments, NonnullOwnPtrVector<KString>& environment)
{
    size_t total_arguments_size = 0;
    size_t total_environment_size = 0;

    for (auto& a : arguments)
        total_arguments_size += a.length() + 1;
    for (auto& e : environment)
        total_environment_size += e.length() + 1;

    total_arguments_size += sizeof(char*) * (arguments.size() + 1);
    total_environment_size += sizeof(char*) * (environment.size() + 1);

    static constexpr size_t max_arguments_size = Thread::default_userspace_stack_size / 8;
    static constexpr size_t max_environment_size = Thread::default_userspace_stack_size / 8;

    if (total_arguments_size > max_arguments_size)
        return false;

    if (total_environment_size > max_environment_size)
        return false;

    // FIXME: This doesn't account for the size of the auxiliary vector
    return true;
}

static KResultOr<FlatPtr> make_userspace_context_for_main_thread([[maybe_unused]] ThreadRegisters& regs, Memory::Region& region, NonnullOwnPtrVector<KString> const& arguments,
    NonnullOwnPtrVector<KString> const& environment, Vector<ELF::AuxiliaryValue> auxiliary_values)
{
    FlatPtr new_sp = region.range().end().get();

    // Add some bits of randomness to the user stack pointer.
    new_sp -= round_up_to_power_of_two(get_fast_random<u32>() % 4096, 16);

    auto push_on_new_stack = [&new_sp](FlatPtr value) {
        new_sp -= sizeof(FlatPtr);
        Userspace<FlatPtr*> stack_ptr = new_sp;
        auto result = copy_to_user(stack_ptr, &value);
        VERIFY(result.is_success());
    };

    auto push_aux_value_on_new_stack = [&new_sp](auxv_t value) {
        new_sp -= sizeof(auxv_t);
        Userspace<auxv_t*> stack_ptr = new_sp;
        auto result = copy_to_user(stack_ptr, &value);
        VERIFY(result.is_success());
    };

    auto push_string_on_new_stack = [&new_sp](StringView string) {
        new_sp -= round_up_to_power_of_two(string.length() + 1, sizeof(FlatPtr));
        Userspace<FlatPtr*> stack_ptr = new_sp;
        auto result = copy_to_user(stack_ptr, string.characters_without_null_termination(), string.length() + 1);
        VERIFY(result.is_success());
    };

    Vector<FlatPtr> argv_entries;
    for (auto& argument : arguments) {
        push_string_on_new_stack(argument.view());
        if (!argv_entries.try_append(new_sp))
            return ENOMEM;
    }

    Vector<FlatPtr> env_entries;
    for (auto& variable : environment) {
        push_string_on_new_stack(variable.view());
        if (!env_entries.try_append(new_sp))
            return ENOMEM;
    }

    for (auto& value : auxiliary_values) {
        if (!value.optional_string.is_empty()) {
            push_string_on_new_stack(value.optional_string);
            value.auxv.a_un.a_ptr = (void*)new_sp;
        }
    }

    for (ssize_t i = auxiliary_values.size() - 1; i >= 0; --i) {
        auto& value = auxiliary_values[i];
        push_aux_value_on_new_stack(value.auxv);
    }

    push_on_new_stack(0);
    for (ssize_t i = env_entries.size() - 1; i >= 0; --i)
        push_on_new_stack(env_entries[i]);
    FlatPtr envp = new_sp;

    push_on_new_stack(0);
    for (ssize_t i = argv_entries.size() - 1; i >= 0; --i)
        push_on_new_stack(argv_entries[i]);
    FlatPtr argv = new_sp;

    // NOTE: The stack needs to be 16-byte aligned.
    new_sp -= new_sp % 16;

#if ARCH(I386)
    // GCC assumes that the return address has been pushed to the stack when it enters the function,
    // so we need to reserve an extra pointer's worth of bytes below this to make GCC's stack alignment
    // calculations work
    new_sp -= sizeof(void*);

    push_on_new_stack(envp);
    push_on_new_stack(argv);
    push_on_new_stack(argv_entries.size());
#else
    regs.rdi = argv_entries.size();
    regs.rsi = argv;
    regs.rdx = envp;
#endif

    VERIFY(new_sp % 16 == 0);

    // FIXME: The way we're setting up the stack and passing arguments to the entry point isn't ABI-compliant
    return new_sp;
}

struct RequiredLoadRange {
    FlatPtr start { 0 };
    FlatPtr end { 0 };
};

static KResultOr<RequiredLoadRange> get_required_load_range(OpenFileDescription& program_description)
{
    auto& inode = *(program_description.inode());
    auto vmobject = TRY(Memory::SharedInodeVMObject::try_create_with_inode(inode));

    size_t executable_size = inode.size();

    auto region = TRY(MM.allocate_kernel_region_with_vmobject(*vmobject, Memory::page_round_up(executable_size), "ELF memory range calculation", Memory::Region::Access::Read));
    auto elf_image = ELF::Image(region->vaddr().as_ptr(), executable_size);
    if (!elf_image.is_valid()) {
        return EINVAL;
    }

    RequiredLoadRange range {};
    elf_image.for_each_program_header([&range](const auto& pheader) {
        if (pheader.type() != PT_LOAD)
            return;

        auto region_start = (FlatPtr)pheader.vaddr().as_ptr();
        auto region_end = region_start + pheader.size_in_memory();
        if (range.start == 0 || region_start < range.start)
            range.start = region_start;
        if (range.end == 0 || region_end > range.end)
            range.end = region_end;
    });

    VERIFY(range.end > range.start);
    return range;
};

static KResultOr<FlatPtr> get_load_offset(const ElfW(Ehdr) & main_program_header, OpenFileDescription& main_program_description, OpenFileDescription* interpreter_description)
{
    constexpr FlatPtr load_range_start = 0x08000000;
    constexpr FlatPtr load_range_size = 65536 * PAGE_SIZE; // 2**16 * PAGE_SIZE = 256MB
    constexpr FlatPtr minimum_load_offset_randomization_size = 10 * MiB;

    auto random_load_offset_in_range([](auto start, auto size) {
        return Memory::page_round_down(start + get_good_random<FlatPtr>() % size);
    });

    if (main_program_header.e_type == ET_DYN) {
        return random_load_offset_in_range(load_range_start, load_range_size);
    }

    if (main_program_header.e_type != ET_EXEC)
        return EINVAL;

    auto main_program_load_range = TRY(get_required_load_range(main_program_description));

    RequiredLoadRange selected_range {};

    if (interpreter_description) {
        auto interpreter_load_range = TRY(get_required_load_range(*interpreter_description));

        auto interpreter_size_in_memory = interpreter_load_range.end - interpreter_load_range.start;
        auto interpreter_load_range_end = load_range_start + load_range_size - interpreter_size_in_memory;

        // No intersection
        if (main_program_load_range.end < load_range_start || main_program_load_range.start > interpreter_load_range_end)
            return random_load_offset_in_range(load_range_start, load_range_size);

        RequiredLoadRange first_available_part = { load_range_start, main_program_load_range.start };
        RequiredLoadRange second_available_part = { main_program_load_range.end, interpreter_load_range_end };

        // Select larger part
        if (first_available_part.end - first_available_part.start > second_available_part.end - second_available_part.start)
            selected_range = first_available_part;
        else
            selected_range = second_available_part;
    } else
        selected_range = main_program_load_range;

    // If main program is too big and leaves us without enough space for adequate loader randomization
    if (selected_range.end - selected_range.start < minimum_load_offset_randomization_size)
        return E2BIG;

    return random_load_offset_in_range(selected_range.start, selected_range.end - selected_range.start);
}

enum class ShouldAllocateTls {
    No,
    Yes,
};

enum class ShouldAllowSyscalls {
    No,
    Yes,
};

static KResultOr<LoadResult> load_elf_object(NonnullOwnPtr<Memory::AddressSpace> new_space, OpenFileDescription& object_description,
    FlatPtr load_offset, ShouldAllocateTls should_allocate_tls, ShouldAllowSyscalls should_allow_syscalls)
{
    auto& inode = *(object_description.inode());
    auto vmobject = TRY(Memory::SharedInodeVMObject::try_create_with_inode(inode));

    if (vmobject->writable_mappings()) {
        dbgln("Refusing to execute a write-mapped program");
        return ETXTBSY;
    }

    size_t executable_size = inode.size();

    auto executable_region = TRY(MM.allocate_kernel_region_with_vmobject(*vmobject, Memory::page_round_up(executable_size), "ELF loading", Memory::Region::Access::Read));
    auto elf_image = ELF::Image(executable_region->vaddr().as_ptr(), executable_size);

    if (!elf_image.is_valid())
        return ENOEXEC;

    Memory::Region* master_tls_region { nullptr };
    size_t master_tls_size = 0;
    size_t master_tls_alignment = 0;
    FlatPtr load_base_address = 0;

    auto elf_name = TRY(object_description.pseudo_path());
    VERIFY(!Processor::in_critical());

    Memory::MemoryManager::enter_address_space(*new_space);

    auto load_tls_section = [&](auto& program_header) -> KResult {
        VERIFY(should_allocate_tls == ShouldAllocateTls::Yes);
        VERIFY(program_header.size_in_memory());

        if (!elf_image.is_within_image(program_header.raw_data(), program_header.size_in_image())) {
            dbgln("Shenanigans! ELF PT_TLS header sneaks outside of executable.");
            return ENOEXEC;
        }

        auto range = TRY(new_space->try_allocate_range({}, program_header.size_in_memory()));
        master_tls_region = TRY(new_space->allocate_region(range, String::formatted("{} (master-tls)", elf_name), PROT_READ | PROT_WRITE, AllocationStrategy::Reserve));
        master_tls_size = program_header.size_in_memory();
        master_tls_alignment = program_header.alignment();

        TRY(copy_to_user(master_tls_region->vaddr().as_ptr(), program_header.raw_data(), program_header.size_in_image()));
        return KSuccess;
    };

    auto load_writable_section = [&](auto& program_header) -> KResult {
        // Writable section: create a copy in memory.
        VERIFY(program_header.alignment() == PAGE_SIZE);

        if (!elf_image.is_within_image(program_header.raw_data(), program_header.size_in_image())) {
            dbgln("Shenanigans! Writable ELF PT_LOAD header sneaks outside of executable.");
            return ENOEXEC;
        }

        int prot = 0;
        if (program_header.is_readable())
            prot |= PROT_READ;
        if (program_header.is_writable())
            prot |= PROT_WRITE;
        auto region_name = String::formatted("{} (data-{}{})", elf_name, program_header.is_readable() ? "r" : "", program_header.is_writable() ? "w" : "");

        auto range_base = VirtualAddress { Memory::page_round_down(program_header.vaddr().offset(load_offset).get()) };
        auto range_end = VirtualAddress { Memory::page_round_up(program_header.vaddr().offset(load_offset).offset(program_header.size_in_memory()).get()) };

        auto range = TRY(new_space->try_allocate_range(range_base, range_end.get() - range_base.get()));
        auto region = TRY(new_space->allocate_region(range, region_name, prot, AllocationStrategy::Reserve));

        // It's not always the case with PIE executables (and very well shouldn't be) that the
        // virtual address in the program header matches the one we end up giving the process.
        // In order to copy the data image correctly into memory, we need to copy the data starting at
        // the right initial page offset into the pages allocated for the elf_alloc-XX section.
        // FIXME: There's an opportunity to munmap, or at least mprotect, the padding space between
        //     the .text and .data PT_LOAD sections of the executable.
        //     Accessing it would definitely be a bug.
        auto page_offset = program_header.vaddr();
        page_offset.mask(~PAGE_MASK);
        TRY(copy_to_user((u8*)region->vaddr().as_ptr() + page_offset.get(), program_header.raw_data(), program_header.size_in_image()));
        return KSuccess;
    };

    auto load_section = [&](auto& program_header) -> KResult {
        if (program_header.size_in_memory() == 0)
            return KSuccess;

        if (program_header.is_writable())
            return load_writable_section(program_header);

        // Non-writable section: map the executable itself in memory.
        VERIFY(program_header.alignment() == PAGE_SIZE);
        int prot = 0;
        if (program_header.is_readable())
            prot |= PROT_READ;
        if (program_header.is_writable())
            prot |= PROT_WRITE;
        if (program_header.is_executable())
            prot |= PROT_EXEC;

        auto range_base = VirtualAddress { Memory::page_round_down(program_header.vaddr().offset(load_offset).get()) };
        auto range_end = VirtualAddress { Memory::page_round_up(program_header.vaddr().offset(load_offset).offset(program_header.size_in_memory()).get()) };
        auto range = TRY(new_space->try_allocate_range(range_base, range_end.get() - range_base.get()));
        auto region = TRY(new_space->allocate_region_with_vmobject(range, *vmobject, program_header.offset(), elf_name->view(), prot, true));

        if (should_allow_syscalls == ShouldAllowSyscalls::Yes)
            region->set_syscall_region(true);
        if (program_header.offset() == 0)
            load_base_address = (FlatPtr)region->vaddr().as_ptr();
        return KSuccess;
    };

    auto load_elf_program_header = [&](auto& program_header) -> KResult {
        if (program_header.type() == PT_TLS)
            return load_tls_section(program_header);

        if (program_header.type() == PT_LOAD)
            return load_section(program_header);

        // NOTE: We ignore other program header types.
        return KSuccess;
    };

    TRY([&] {
        KResult result = KSuccess;
        elf_image.for_each_program_header([&](ELF::Image::ProgramHeader const& program_header) {
            result = load_elf_program_header(program_header);
            return result.is_error() ? IterationDecision::Break : IterationDecision::Continue;
        });
        return result;
    }());

    if (!elf_image.entry().offset(load_offset).get()) {
        dbgln("do_exec: Failure loading program, entry pointer is invalid! {})", elf_image.entry().offset(load_offset));
        return ENOEXEC;
    }

    auto stack_range = TRY(new_space->try_allocate_range({}, Thread::default_userspace_stack_size));
    auto* stack_region = TRY(new_space->allocate_region(stack_range, "Stack (Main thread)", PROT_READ | PROT_WRITE, AllocationStrategy::Reserve));
    stack_region->set_stack(true);

    return LoadResult {
        move(new_space),
        load_base_address,
        elf_image.entry().offset(load_offset).get(),
        executable_size,
        AK::try_make_weak_ptr(master_tls_region),
        master_tls_size,
        master_tls_alignment,
        stack_region->make_weak_ptr()
    };
}

KResultOr<LoadResult>
Process::load(NonnullRefPtr<OpenFileDescription> main_program_description,
    RefPtr<OpenFileDescription> interpreter_description, const ElfW(Ehdr) & main_program_header)
{
    auto new_space = TRY(Memory::AddressSpace::try_create(nullptr));

    ScopeGuard space_guard([&]() {
        Memory::MemoryManager::enter_process_address_space(*this);
    });

    auto load_offset = TRY(get_load_offset(main_program_header, main_program_description, interpreter_description));

    if (interpreter_description.is_null()) {
        auto load_result = TRY(load_elf_object(move(new_space), main_program_description, load_offset, ShouldAllocateTls::Yes, ShouldAllowSyscalls::No));
        m_master_tls_region = load_result.tls_region;
        m_master_tls_size = load_result.tls_size;
        m_master_tls_alignment = load_result.tls_alignment;
        return load_result;
    }

    auto interpreter_load_result = TRY(load_elf_object(move(new_space), *interpreter_description, load_offset, ShouldAllocateTls::No, ShouldAllowSyscalls::Yes));

    // TLS allocation will be done in userspace by the loader
    VERIFY(!interpreter_load_result.tls_region);
    VERIFY(!interpreter_load_result.tls_alignment);
    VERIFY(!interpreter_load_result.tls_size);

    return interpreter_load_result;
}

KResult Process::do_exec(NonnullRefPtr<OpenFileDescription> main_program_description, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment,
    RefPtr<OpenFileDescription> interpreter_description, Thread*& new_main_thread, u32& prev_flags, const ElfW(Ehdr) & main_program_header)
{
    VERIFY(is_user_process());
    VERIFY(!Processor::in_critical());
    // Although we *could* handle a pseudo_path here, trying to execute something that doesn't have
    // a custody (e.g. BlockDevice or RandomDevice) is pretty suspicious anyway.
    auto path = TRY(main_program_description->original_absolute_path());

    dbgln_if(EXEC_DEBUG, "do_exec: {}", path);

    // FIXME: How much stack space does process startup need?
    if (!validate_stack_size(arguments, environment))
        return E2BIG;

    // FIXME: split_view() currently allocates (Vector) without checking for failure.
    auto parts = path->view().split_view('/');
    if (parts.is_empty())
        return ENOENT;

    auto new_process_name = TRY(KString::try_create(parts.last()));
    auto new_main_thread_name = TRY(new_process_name->try_clone());

    auto load_result = TRY(load(main_program_description, interpreter_description, main_program_header));

    // NOTE: We don't need the interpreter executable description after this point.
    //       We destroy it here to prevent it from getting destroyed when we return from this function.
    //       That's important because when we're returning from this function, we're in a very delicate
    //       state where we can't block (e.g by trying to acquire a mutex in description teardown.)
    bool has_interpreter = interpreter_description;
    interpreter_description = nullptr;

    auto signal_trampoline_range = TRY(load_result.space->try_allocate_range({}, PAGE_SIZE));
    auto signal_trampoline_region = TRY(load_result.space->allocate_region_with_vmobject(signal_trampoline_range, g_signal_trampoline_region->vmobject(), 0, "Signal trampoline", PROT_READ | PROT_EXEC, true));
    signal_trampoline_region->set_syscall_region(true);

    // (For dynamically linked executable) Allocate an FD for passing the main executable to the dynamic loader.
    Optional<ScopedDescriptionAllocation> main_program_fd_allocation;
    if (has_interpreter)
        main_program_fd_allocation = TRY(m_fds.allocate());

    // We commit to the new executable at this point. There is no turning back!

    // Prevent other processes from attaching to us with ptrace while we're doing this.
    MutexLocker ptrace_locker(ptrace_lock());

    // Disable profiling temporarily in case it's running on this process.
    auto was_profiling = m_profiling;
    TemporaryChange profiling_disabler(m_profiling, false);

    kill_threads_except_self();

    bool executable_is_setid = false;

    if (!(main_program_description->custody()->mount_flags() & MS_NOSUID)) {
        auto main_program_metadata = main_program_description->metadata();
        if (main_program_metadata.is_setuid()) {
            executable_is_setid = true;
            ProtectedDataMutationScope scope { *this };
            m_protected_values.euid = main_program_metadata.uid;
            m_protected_values.suid = main_program_metadata.uid;
        }
        if (main_program_metadata.is_setgid()) {
            executable_is_setid = true;
            ProtectedDataMutationScope scope { *this };
            m_protected_values.egid = main_program_metadata.gid;
            m_protected_values.sgid = main_program_metadata.gid;
        }
    }

    set_dumpable(!executable_is_setid);

    {
        // We must disable global profiling (especially kfree tracing) here because
        // we might otherwise end up walking the stack into the process' space that
        // is about to be destroyed.
        TemporaryChange global_profiling_disabler(g_profiling_all_threads, false);
        m_space = load_result.space.release_nonnull();
    }
    Memory::MemoryManager::enter_address_space(*m_space);

    m_executable = main_program_description->custody();
    m_arguments = move(arguments);
    m_environment = move(environment);

    m_veil_state = VeilState::None;
    m_unveiled_paths.clear();
    m_unveiled_paths.set_metadata({ "/", UnveilAccess::None, false });

    for (auto& property : m_coredump_properties)
        property = {};

    auto current_thread = Thread::current();
    current_thread->clear_signals();

    clear_futex_queues_on_exec();

    fds().change_each([&](auto& file_description_metadata) {
        if (file_description_metadata.is_valid() && file_description_metadata.flags() & FD_CLOEXEC)
            file_description_metadata = {};
    });

    if (main_program_fd_allocation.has_value()) {
        main_program_description->set_readable(true);
        m_fds[main_program_fd_allocation->fd].set(move(main_program_description), FD_CLOEXEC);
    }

    new_main_thread = nullptr;
    if (&current_thread->process() == this) {
        new_main_thread = current_thread;
    } else {
        for_each_thread([&](auto& thread) {
            new_main_thread = &thread;
            return IterationDecision::Break;
        });
    }
    VERIFY(new_main_thread);

    auto auxv = generate_auxiliary_vector(load_result.load_base, load_result.entry_eip, uid(), euid(), gid(), egid(), path->view(), main_program_fd_allocation);

    // NOTE: We create the new stack before disabling interrupts since it will zero-fault
    //       and we don't want to deal with faults after this point.
    auto make_stack_result = make_userspace_context_for_main_thread(new_main_thread->regs(), *load_result.stack_region.unsafe_ptr(), m_arguments, m_environment, move(auxv));
    if (make_stack_result.is_error())
        return make_stack_result.error();
    FlatPtr new_userspace_sp = make_stack_result.value();

    if (wait_for_tracer_at_next_execve()) {
        // Make sure we release the ptrace lock here or the tracer will block forever.
        ptrace_locker.unlock();
        Thread::current()->send_urgent_signal_to_self(SIGSTOP);
    } else {
        // Unlock regardless before disabling interrupts.
        // Ensure we always unlock after checking ptrace status to avoid TOCTOU ptrace issues
        ptrace_locker.unlock();
    }

    // We enter a critical section here because we don't want to get interrupted between do_exec()
    // and Processor::assume_context() or the next context switch.
    // If we used an InterruptDisabler that sti()'d on exit, we might timer tick'd too soon in exec().
    Processor::enter_critical();
    prev_flags = cpu_flags();
    cli();

    // NOTE: Be careful to not trigger any page faults below!

    m_name = move(new_process_name);
    new_main_thread->set_name(move(new_main_thread_name));

    {
        ProtectedDataMutationScope scope { *this };
        m_protected_values.promises = m_protected_values.execpromises.load();
        m_protected_values.has_promises = m_protected_values.has_execpromises.load();

        m_protected_values.execpromises = 0;
        m_protected_values.has_execpromises = false;

        m_protected_values.signal_trampoline = signal_trampoline_region->vaddr();

        // FIXME: PID/TID ISSUE
        m_protected_values.pid = new_main_thread->tid().value();
    }

    auto tsr_result = new_main_thread->make_thread_specific_region({});
    if (tsr_result.is_error()) {
        // FIXME: We cannot fail this late. Refactor this so the allocation happens before we commit to the new executable.
        VERIFY_NOT_REACHED();
    }
    new_main_thread->reset_fpu_state();

    auto& regs = new_main_thread->m_regs;
#if ARCH(I386)
    regs.cs = GDT_SELECTOR_CODE3 | 3;
    regs.ds = GDT_SELECTOR_DATA3 | 3;
    regs.es = GDT_SELECTOR_DATA3 | 3;
    regs.ss = GDT_SELECTOR_DATA3 | 3;
    regs.fs = GDT_SELECTOR_DATA3 | 3;
    regs.gs = GDT_SELECTOR_TLS | 3;
    regs.eip = load_result.entry_eip;
    regs.esp = new_userspace_sp;
#else
    regs.rip = load_result.entry_eip;
    regs.rsp = new_userspace_sp;
#endif
    regs.cr3 = address_space().page_directory().cr3();

    {
        TemporaryChange profiling_disabler(m_profiling, was_profiling);
        PerformanceManager::add_process_exec_event(*this);
    }

    {
        SpinlockLocker lock(g_scheduler_lock);
        new_main_thread->set_state(Thread::State::Runnable);
    }
    u32 lock_count_to_restore;
    [[maybe_unused]] auto rc = big_lock().force_unlock_if_locked(lock_count_to_restore);
    VERIFY_INTERRUPTS_DISABLED();
    VERIFY(Processor::in_critical());
    return KSuccess;
}

static Vector<ELF::AuxiliaryValue> generate_auxiliary_vector(FlatPtr load_base, FlatPtr entry_eip, UserID uid, UserID euid, GroupID gid, GroupID egid, StringView executable_path, Optional<Process::ScopedDescriptionAllocation> const& main_program_fd_allocation)
{
    Vector<ELF::AuxiliaryValue> auxv;
    // PHDR/EXECFD
    // PH*
    auxv.append({ ELF::AuxiliaryValue::PageSize, PAGE_SIZE });
    auxv.append({ ELF::AuxiliaryValue::BaseAddress, (void*)load_base });

    auxv.append({ ELF::AuxiliaryValue::Entry, (void*)entry_eip });
    // NOTELF
    auxv.append({ ELF::AuxiliaryValue::Uid, (long)uid.value() });
    auxv.append({ ELF::AuxiliaryValue::EUid, (long)euid.value() });
    auxv.append({ ELF::AuxiliaryValue::Gid, (long)gid.value() });
    auxv.append({ ELF::AuxiliaryValue::EGid, (long)egid.value() });

    auxv.append({ ELF::AuxiliaryValue::Platform, Processor::platform_string() });
    // FIXME: This is platform specific
    auxv.append({ ELF::AuxiliaryValue::HwCap, (long)CPUID(1).edx() });

    auxv.append({ ELF::AuxiliaryValue::ClockTick, (long)TimeManagement::the().ticks_per_second() });

    // FIXME: Also take into account things like extended filesystem permissions? That's what linux does...
    auxv.append({ ELF::AuxiliaryValue::Secure, ((uid != euid) || (gid != egid)) ? 1 : 0 });

    char random_bytes[16] {};
    get_fast_random_bytes({ (u8*)random_bytes, sizeof(random_bytes) });

    auxv.append({ ELF::AuxiliaryValue::Random, String(random_bytes, sizeof(random_bytes)) });

    auxv.append({ ELF::AuxiliaryValue::ExecFilename, executable_path });

    if (main_program_fd_allocation.has_value())
        auxv.append({ ELF::AuxiliaryValue::ExecFileDescriptor, main_program_fd_allocation->fd });

    auxv.append({ ELF::AuxiliaryValue::Null, 0L });
    return auxv;
}

static KResultOr<NonnullOwnPtrVector<KString>> find_shebang_interpreter_for_executable(char const first_page[], size_t nread)
{
    int word_start = 2;
    size_t word_length = 0;
    if (nread > 2 && first_page[0] == '#' && first_page[1] == '!') {
        NonnullOwnPtrVector<KString> interpreter_words;

        for (size_t i = 2; i < nread; ++i) {
            if (first_page[i] == '\n') {
                break;
            }

            if (first_page[i] != ' ') {
                ++word_length;
            }

            if (first_page[i] == ' ') {
                if (word_length > 0) {
                    auto word = TRY(KString::try_create(StringView { &first_page[word_start], word_length }));
                    interpreter_words.append(move(word));
                }
                word_length = 0;
                word_start = i + 1;
            }
        }

        if (word_length > 0) {
            auto word = TRY(KString::try_create(StringView { &first_page[word_start], word_length }));
            interpreter_words.append(move(word));
        }

        if (!interpreter_words.is_empty())
            return interpreter_words;
    }

    return ENOEXEC;
}

KResultOr<RefPtr<OpenFileDescription>> Process::find_elf_interpreter_for_executable(StringView path, ElfW(Ehdr) const& main_executable_header, size_t main_executable_header_size, size_t file_size)
{
    // Not using KResultOr here because we'll want to do the same thing in userspace in the RTLD
    String interpreter_path;
    if (!ELF::validate_program_headers(main_executable_header, file_size, (u8 const*)&main_executable_header, main_executable_header_size, &interpreter_path)) {
        dbgln("exec({}): File has invalid ELF Program headers", path);
        return ENOEXEC;
    }

    if (!interpreter_path.is_empty()) {
        dbgln_if(EXEC_DEBUG, "exec({}): Using program interpreter {}", path, interpreter_path);
        auto interpreter_description = TRY(VirtualFileSystem::the().open(interpreter_path, O_EXEC, 0, current_directory()));
        auto interp_metadata = interpreter_description->metadata();

        VERIFY(interpreter_description->inode());

        // Validate the program interpreter as a valid elf binary.
        // If your program interpreter is a #! file or something, it's time to stop playing games :)
        if (interp_metadata.size < (int)sizeof(ElfW(Ehdr)))
            return ENOEXEC;

        char first_page[PAGE_SIZE] = {};
        auto first_page_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&first_page);
        auto nread = TRY(interpreter_description->read(first_page_buffer, sizeof(first_page)));

        if (nread < sizeof(ElfW(Ehdr)))
            return ENOEXEC;

        auto elf_header = (ElfW(Ehdr)*)first_page;
        if (!ELF::validate_elf_header(*elf_header, interp_metadata.size)) {
            dbgln("exec({}): Interpreter ({}) has invalid ELF header", path, interpreter_path);
            return ENOEXEC;
        }

        // Not using KResultOr here because we'll want to do the same thing in userspace in the RTLD
        String interpreter_interpreter_path;
        if (!ELF::validate_program_headers(*elf_header, interp_metadata.size, (u8*)first_page, nread, &interpreter_interpreter_path)) {
            dbgln("exec({}): Interpreter ({}) has invalid ELF Program headers", path, interpreter_path);
            return ENOEXEC;
        }

        if (!interpreter_interpreter_path.is_empty()) {
            dbgln("exec({}): Interpreter ({}) has its own interpreter ({})! No thank you!", path, interpreter_path, interpreter_interpreter_path);
            return ELOOP;
        }

        return interpreter_description;
    }

    if (main_executable_header.e_type == ET_REL) {
        // We can't exec an ET_REL, that's just an object file from the compiler
        return ENOEXEC;
    }
    if (main_executable_header.e_type == ET_DYN) {
        // If it's ET_DYN with no PT_INTERP, then it's a dynamic executable responsible
        // for its own relocation (i.e. it's /usr/lib/Loader.so)
        if (path != "/usr/lib/Loader.so")
            dbgln("exec({}): WARNING - Dynamic ELF executable without a PT_INTERP header, and isn't /usr/lib/Loader.so", path);
        return nullptr;
    }

    // No interpreter, but, path refers to a valid elf image
    return nullptr;
}

KResult Process::exec(NonnullOwnPtr<KString> path, NonnullOwnPtrVector<KString> arguments, NonnullOwnPtrVector<KString> environment, int recursion_depth)
{
    if (recursion_depth > 2) {
        dbgln("exec({}): SHENANIGANS! recursed too far trying to find #! interpreter", path);
        return ELOOP;
    }

    // Open the file to check what kind of binary format it is
    // Currently supported formats:
    //    - #! interpreted file
    //    - ELF32
    //        * ET_EXEC binary that just gets loaded
    //        * ET_DYN binary that requires a program interpreter
    //
    auto description = TRY(VirtualFileSystem::the().open(path->view(), O_EXEC, 0, current_directory()));
    auto metadata = description->metadata();

    if (!metadata.is_regular_file())
        return EACCES;

    // Always gonna need at least 3 bytes. these are for #!X
    if (metadata.size < 3)
        return ENOEXEC;

    VERIFY(description->inode());

    // Read the first page of the program into memory so we can validate the binfmt of it
    char first_page[PAGE_SIZE];
    auto first_page_buffer = UserOrKernelBuffer::for_kernel_buffer((u8*)&first_page);
    auto nread = TRY(description->read(first_page_buffer, sizeof(first_page)));

    // 1) #! interpreted file
    auto shebang_result = find_shebang_interpreter_for_executable(first_page, nread);
    if (!shebang_result.is_error()) {
        auto shebang_words = shebang_result.release_value();
        auto shebang_path = TRY(shebang_words.first().try_clone());
        arguments.ptr_at(0) = move(path);
        if (!arguments.try_prepend(move(shebang_words)))
            return ENOMEM;
        return exec(move(shebang_path), move(arguments), move(environment), ++recursion_depth);
    }

    // #2) ELF32 for i386

    if (nread < sizeof(ElfW(Ehdr)))
        return ENOEXEC;
    auto main_program_header = (ElfW(Ehdr)*)first_page;

    if (!ELF::validate_elf_header(*main_program_header, metadata.size)) {
        dbgln("exec({}): File has invalid ELF header", path);
        return ENOEXEC;
    }

    // The bulk of exec() is done by do_exec(), which ensures that all locals
    // are cleaned up by the time we yield-teleport below.
    Thread* new_main_thread = nullptr;
    u32 prev_flags = 0;

    auto interpreter_description = TRY(find_elf_interpreter_for_executable(path->view(), *main_program_header, nread, metadata.size));
    TRY(do_exec(move(description), move(arguments), move(environment), move(interpreter_description), new_main_thread, prev_flags, *main_program_header));

    VERIFY_INTERRUPTS_DISABLED();
    VERIFY(Processor::in_critical());

    auto current_thread = Thread::current();
    if (current_thread == new_main_thread) {
        // We need to enter the scheduler lock before changing the state
        // and it will be released after the context switch into that
        // thread. We should also still be in our critical section
        VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
        VERIFY(Processor::in_critical() == 1);
        g_scheduler_lock.lock();
        current_thread->set_state(Thread::State::Running);
        Processor::assume_context(*current_thread, prev_flags);
        VERIFY_NOT_REACHED();
    }

    // NOTE: This code path is taken in the non-syscall case, i.e when the kernel spawns
    //       a userspace process directly (such as /bin/SystemServer on startup)

    if (prev_flags & 0x200)
        sti();
    Processor::leave_critical();
    return KSuccess;
}

KResultOr<FlatPtr> Process::sys$execve(Userspace<const Syscall::SC_execve_params*> user_params)
{
    VERIFY_PROCESS_BIG_LOCK_ACQUIRED(this);
    REQUIRE_PROMISE(exec);

    // NOTE: Be extremely careful with allocating any kernel memory in exec().
    //       On success, the kernel stack will be lost.
    auto params = TRY(copy_typed_from_user(user_params));

    if (params.arguments.length > ARG_MAX || params.environment.length > ARG_MAX)
        return E2BIG;

    auto path = TRY(get_syscall_path_argument(params.path));

    auto copy_user_strings = [](const auto& list, auto& output) -> KResult {
        if (!list.length)
            return KSuccess;
        Checked<size_t> size = sizeof(*list.strings);
        size *= list.length;
        if (size.has_overflow())
            return EOVERFLOW;
        Vector<Syscall::StringArgument, 32> strings;
        if (!strings.try_resize(list.length))
            return ENOMEM;
        TRY(copy_from_user(strings.data(), list.strings, size.value()));
        for (size_t i = 0; i < list.length; ++i) {
            auto string = TRY(try_copy_kstring_from_user(strings[i]));
            if (!output.try_append(move(string)))
                return ENOMEM;
        }
        return KSuccess;
    };

    NonnullOwnPtrVector<KString> arguments;
    TRY(copy_user_strings(params.arguments, arguments));

    NonnullOwnPtrVector<KString> environment;
    TRY(copy_user_strings(params.environment, environment));

    auto result = exec(move(path), move(arguments), move(environment));
    VERIFY(result.is_error()); // We should never continue after a successful exec!
    return result.error();
}
}