1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
/*
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
//#define STORAGE_DEVICE_DEBUG
#include <AK/Memory.h>
#include <AK/StringView.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/Storage/StorageDevice.h>
namespace Kernel {
StorageDevice::StorageDevice(const StorageController& controller, int major, int minor, size_t sector_size, size_t max_addressable_block)
: BlockDevice(major, minor, sector_size)
, m_storage_controller(controller)
, m_max_addressable_block(max_addressable_block)
{
}
const char* StorageDevice::class_name() const
{
return "StorageDevice";
}
NonnullRefPtr<StorageController> StorageDevice::controller() const
{
return m_storage_controller;
}
KResultOr<size_t> StorageDevice::read(FileDescription&, size_t offset, UserOrKernelBuffer& outbuf, size_t len)
{
unsigned index = offset / block_size();
u16 whole_blocks = len / block_size();
ssize_t remaining = len % block_size();
unsigned blocks_per_page = PAGE_SIZE / block_size();
// PATAChannel will chuck a wobbly if we try to read more than PAGE_SIZE
// at a time, because it uses a single page for its DMA buffer.
if (whole_blocks >= blocks_per_page) {
whole_blocks = blocks_per_page;
remaining = 0;
}
#ifdef STORAGE_DEVICE_DEBUG
klog() << "StorageDevice::read() index=" << index << " whole_blocks=" << whole_blocks << " remaining=" << remaining;
#endif
if (whole_blocks > 0) {
auto read_request = make_request<AsyncBlockDeviceRequest>(AsyncBlockDeviceRequest::Read, index, whole_blocks, outbuf, whole_blocks * block_size());
auto result = read_request->wait();
if (result.wait_result().was_interrupted())
return KResult(-EINTR);
switch (result.request_result()) {
case AsyncDeviceRequest::Failure:
case AsyncDeviceRequest::Cancelled:
return KResult(-EIO);
case AsyncDeviceRequest::MemoryFault:
return KResult(-EFAULT);
default:
break;
}
}
off_t pos = whole_blocks * block_size();
if (remaining > 0) {
auto data = ByteBuffer::create_uninitialized(block_size());
auto data_buffer = UserOrKernelBuffer::for_kernel_buffer(data.data());
auto read_request = make_request<AsyncBlockDeviceRequest>(AsyncBlockDeviceRequest::Read, index + whole_blocks, 1, data_buffer, block_size());
auto result = read_request->wait();
if (result.wait_result().was_interrupted())
return KResult(-EINTR);
switch (result.request_result()) {
case AsyncDeviceRequest::Failure:
return pos;
case AsyncDeviceRequest::Cancelled:
return KResult(-EIO);
case AsyncDeviceRequest::MemoryFault:
// This should never happen, we're writing to a kernel buffer!
ASSERT_NOT_REACHED();
default:
break;
}
if (!outbuf.write(data.data(), pos, remaining))
return KResult(-EFAULT);
}
return pos + remaining;
}
bool StorageDevice::can_read(const FileDescription&, size_t offset) const
{
return offset < (max_addressable_block() * block_size());
}
KResultOr<size_t> StorageDevice::write(FileDescription&, size_t offset, const UserOrKernelBuffer& inbuf, size_t len)
{
unsigned index = offset / block_size();
u16 whole_blocks = len / block_size();
ssize_t remaining = len % block_size();
unsigned blocks_per_page = PAGE_SIZE / block_size();
// PATAChannel will chuck a wobbly if we try to write more than PAGE_SIZE
// at a time, because it uses a single page for its DMA buffer.
if (whole_blocks >= blocks_per_page) {
whole_blocks = blocks_per_page;
remaining = 0;
}
#ifdef STORAGE_DEVICE_DEBUG
klog() << "StorageDevice::write() index=" << index << " whole_blocks=" << whole_blocks << " remaining=" << remaining;
#endif
if (whole_blocks > 0) {
auto write_request = make_request<AsyncBlockDeviceRequest>(AsyncBlockDeviceRequest::Write, index, whole_blocks, inbuf, whole_blocks * block_size());
auto result = write_request->wait();
if (result.wait_result().was_interrupted())
return KResult(-EINTR);
switch (result.request_result()) {
case AsyncDeviceRequest::Failure:
case AsyncDeviceRequest::Cancelled:
return KResult(-EIO);
case AsyncDeviceRequest::MemoryFault:
return KResult(-EFAULT);
default:
break;
}
}
off_t pos = whole_blocks * block_size();
// since we can only write in block_size() increments, if we want to do a
// partial write, we have to read the block's content first, modify it,
// then write the whole block back to the disk.
if (remaining > 0) {
auto data = ByteBuffer::create_zeroed(block_size());
auto data_buffer = UserOrKernelBuffer::for_kernel_buffer(data.data());
{
auto read_request = make_request<AsyncBlockDeviceRequest>(AsyncBlockDeviceRequest::Read, index + whole_blocks, 1, data_buffer, block_size());
auto result = read_request->wait();
if (result.wait_result().was_interrupted())
return KResult(-EINTR);
switch (result.request_result()) {
case AsyncDeviceRequest::Failure:
return pos;
case AsyncDeviceRequest::Cancelled:
return KResult(-EIO);
case AsyncDeviceRequest::MemoryFault:
// This should never happen, we're writing to a kernel buffer!
ASSERT_NOT_REACHED();
default:
break;
}
}
if (!inbuf.read(data.data(), pos, remaining))
return KResult(-EFAULT);
{
auto write_request = make_request<AsyncBlockDeviceRequest>(AsyncBlockDeviceRequest::Write, index + whole_blocks, 1, data_buffer, block_size());
auto result = write_request->wait();
if (result.wait_result().was_interrupted())
return KResult(-EINTR);
switch (result.request_result()) {
case AsyncDeviceRequest::Failure:
return pos;
case AsyncDeviceRequest::Cancelled:
return KResult(-EIO);
case AsyncDeviceRequest::MemoryFault:
// This should never happen, we're writing to a kernel buffer!
ASSERT_NOT_REACHED();
default:
break;
}
}
}
return pos + remaining;
}
bool StorageDevice::can_write(const FileDescription&, size_t offset) const
{
return offset < (max_addressable_block() * block_size());
}
}
|