summaryrefslogtreecommitdiff
path: root/Kernel/Scheduler.cpp
blob: 9695086004095fff0dff9125d391ae1b9c5f0545 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
/*
 * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#include <AK/BuiltinWrappers.h>
#include <AK/ScopeGuard.h>
#include <AK/Singleton.h>
#include <AK/Time.h>
#include <Kernel/Arch/x86/InterruptDisabler.h>
#include <Kernel/Arch/x86/TrapFrame.h>
#include <Kernel/Debug.h>
#include <Kernel/Panic.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Process.h>
#include <Kernel/RTC.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Sections.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/kstdio.h>

// Remove this once SMP is stable and can be enabled by default
#define SCHEDULE_ON_ALL_PROCESSORS 0

namespace Kernel {

RecursiveSpinlock g_scheduler_lock;

static u32 time_slice_for(Thread const& thread)
{
    // One time slice unit == 4ms (assuming 250 ticks/second)
    if (thread.is_idle_thread())
        return 1;
    return 2;
}

READONLY_AFTER_INIT Thread* g_finalizer;
READONLY_AFTER_INIT WaitQueue* g_finalizer_wait_queue;
Atomic<bool> g_finalizer_has_work { false };
READONLY_AFTER_INIT static Process* s_colonel_process;

struct ThreadReadyQueue {
    IntrusiveList<&Thread::m_ready_queue_node> thread_list;
};

struct ThreadReadyQueues {
    u32 mask {};
    static constexpr size_t count = sizeof(mask) * 8;
    Array<ThreadReadyQueue, count> queues;
};

static Singleton<SpinlockProtected<ThreadReadyQueues>> g_ready_queues;

static SpinlockProtected<TotalTimeScheduled> g_total_time_scheduled;

// The Scheduler::current_time function provides a current time for scheduling purposes,
// which may not necessarily relate to wall time
u64 (*Scheduler::current_time)();

static void dump_thread_list(bool = false);

static inline u32 thread_priority_to_priority_index(u32 thread_priority)
{
    // Converts the priority in the range of THREAD_PRIORITY_MIN...THREAD_PRIORITY_MAX
    // to a index into g_ready_queues where 0 is the highest priority bucket
    VERIFY(thread_priority >= THREAD_PRIORITY_MIN && thread_priority <= THREAD_PRIORITY_MAX);
    constexpr u32 thread_priority_count = THREAD_PRIORITY_MAX - THREAD_PRIORITY_MIN + 1;
    static_assert(thread_priority_count > 0);
    auto priority_bucket = ((thread_priority_count - (thread_priority - THREAD_PRIORITY_MIN)) / thread_priority_count) * (ThreadReadyQueues::count - 1);
    VERIFY(priority_bucket < ThreadReadyQueues::count);
    return priority_bucket;
}

Thread& Scheduler::pull_next_runnable_thread()
{
    auto affinity_mask = 1u << Processor::current_id();

    return g_ready_queues->with([&](auto& ready_queues) -> Thread& {
        auto priority_mask = ready_queues.mask;
        while (priority_mask != 0) {
            auto priority = bit_scan_forward(priority_mask);
            VERIFY(priority > 0);
            auto& ready_queue = ready_queues.queues[--priority];
            for (auto& thread : ready_queue.thread_list) {
                VERIFY(thread.m_runnable_priority == (int)priority);
                if (thread.is_active())
                    continue;
                if (!(thread.affinity() & affinity_mask))
                    continue;
                thread.m_runnable_priority = -1;
                ready_queue.thread_list.remove(thread);
                if (ready_queue.thread_list.is_empty())
                    ready_queues.mask &= ~(1u << priority);
                // Mark it as active because we are using this thread. This is similar
                // to comparing it with Processor::current_thread, but when there are
                // multiple processors there's no easy way to check whether the thread
                // is actually still needed. This prevents accidental finalization when
                // a thread is no longer in Running state, but running on another core.

                // We need to mark it active here so that this thread won't be
                // scheduled on another core if it were to be queued before actually
                // switching to it.
                // FIXME: Figure out a better way maybe?
                thread.set_active(true);
                return thread;
            }
            priority_mask &= ~(1u << priority);
        }
        return *Processor::idle_thread();
    });
}

Thread* Scheduler::peek_next_runnable_thread()
{
    auto affinity_mask = 1u << Processor::current_id();

    return g_ready_queues->with([&](auto& ready_queues) -> Thread* {
        auto priority_mask = ready_queues.mask;
        while (priority_mask != 0) {
            auto priority = bit_scan_forward(priority_mask);
            VERIFY(priority > 0);
            auto& ready_queue = ready_queues.queues[--priority];
            for (auto& thread : ready_queue.thread_list) {
                VERIFY(thread.m_runnable_priority == (int)priority);
                if (thread.is_active())
                    continue;
                if (!(thread.affinity() & affinity_mask))
                    continue;
                return &thread;
            }
            priority_mask &= ~(1u << priority);
        }

        // Unlike in pull_next_runnable_thread() we don't want to fall back to
        // the idle thread. We just want to see if we have any other thread ready
        // to be scheduled.
        return nullptr;
    });
}

bool Scheduler::dequeue_runnable_thread(Thread& thread, bool check_affinity)
{
    if (thread.is_idle_thread())
        return true;

    return g_ready_queues->with([&](auto& ready_queues) {
        auto priority = thread.m_runnable_priority;
        if (priority < 0) {
            VERIFY(!thread.m_ready_queue_node.is_in_list());
            return false;
        }

        if (check_affinity && !(thread.affinity() & (1 << Processor::current_id())))
            return false;

        VERIFY(ready_queues.mask & (1u << priority));
        auto& ready_queue = ready_queues.queues[priority];
        thread.m_runnable_priority = -1;
        ready_queue.thread_list.remove(thread);
        if (ready_queue.thread_list.is_empty())
            ready_queues.mask &= ~(1u << priority);
        return true;
    });
}

void Scheduler::enqueue_runnable_thread(Thread& thread)
{
    VERIFY(g_scheduler_lock.is_locked_by_current_processor());
    if (thread.is_idle_thread())
        return;
    auto priority = thread_priority_to_priority_index(thread.priority());

    g_ready_queues->with([&](auto& ready_queues) {
        VERIFY(thread.m_runnable_priority < 0);
        thread.m_runnable_priority = (int)priority;
        VERIFY(!thread.m_ready_queue_node.is_in_list());
        auto& ready_queue = ready_queues.queues[priority];
        bool was_empty = ready_queue.thread_list.is_empty();
        ready_queue.thread_list.append(thread);
        if (was_empty)
            ready_queues.mask |= (1u << priority);
    });
}

UNMAP_AFTER_INIT void Scheduler::start()
{
    VERIFY_INTERRUPTS_DISABLED();

    // We need to acquire our scheduler lock, which will be released
    // by the idle thread once control transferred there
    g_scheduler_lock.lock();

    auto& processor = Processor::current();
    VERIFY(processor.is_initialized());
    auto& idle_thread = *Processor::idle_thread();
    VERIFY(processor.current_thread() == &idle_thread);
    idle_thread.set_ticks_left(time_slice_for(idle_thread));
    idle_thread.did_schedule();
    idle_thread.set_initialized(true);
    processor.init_context(idle_thread, false);
    idle_thread.set_state(Thread::State::Running);
    VERIFY(idle_thread.affinity() == (1u << processor.id()));
    processor.initialize_context_switching(idle_thread);
    VERIFY_NOT_REACHED();
}

void Scheduler::pick_next()
{
    VERIFY_INTERRUPTS_DISABLED();

    // Set the in_scheduler flag before acquiring the spinlock. This
    // prevents a recursive call into Scheduler::invoke_async upon
    // leaving the scheduler lock.
    ScopedCritical critical;
    Processor::set_current_in_scheduler(true);
    ScopeGuard guard(
        []() {
            // We may be on a different processor after we got switched
            // back to this thread!
            VERIFY(Processor::current_in_scheduler());
            Processor::set_current_in_scheduler(false);
        });

    SpinlockLocker lock(g_scheduler_lock);

    if constexpr (SCHEDULER_RUNNABLE_DEBUG) {
        dump_thread_list();
    }

    auto& thread_to_schedule = pull_next_runnable_thread();
    if constexpr (SCHEDULER_DEBUG) {
        dbgln("Scheduler[{}]: Switch to {} @ {:#04x}:{:p}",
            Processor::current_id(),
            thread_to_schedule,
            thread_to_schedule.regs().cs, thread_to_schedule.regs().ip());
    }

    // We need to leave our first critical section before switching context,
    // but since we're still holding the scheduler lock we're still in a critical section
    critical.leave();

    thread_to_schedule.set_ticks_left(time_slice_for(thread_to_schedule));
    context_switch(&thread_to_schedule);
}

void Scheduler::yield()
{
    InterruptDisabler disabler;

    auto const* current_thread = Thread::current();
    dbgln_if(SCHEDULER_DEBUG, "Scheduler[{}]: yielding thread {} in_irq={}", Processor::current_id(), *current_thread, Processor::current_in_irq());
    VERIFY(current_thread != nullptr);
    if (Processor::current_in_irq() || Processor::in_critical()) {
        // If we're handling an IRQ we can't switch context, or we're in
        // a critical section where we don't want to switch contexts, then
        // delay until exiting the trap or critical section
        Processor::current().invoke_scheduler_async();
        return;
    }

    Scheduler::pick_next();
}

void Scheduler::context_switch(Thread* thread)
{
    if (Memory::s_mm_lock.is_locked_by_current_processor()) {
        PANIC("In context switch while holding Memory::s_mm_lock");
    }

    thread->did_schedule();

    auto* from_thread = Thread::current();
    VERIFY(from_thread);

    if (from_thread == thread)
        return;

    // If the last process hasn't blocked (still marked as running),
    // mark it as runnable for the next round.
    if (from_thread->state() == Thread::State::Running)
        from_thread->set_state(Thread::State::Runnable);

#ifdef LOG_EVERY_CONTEXT_SWITCH
    auto const msg = "Scheduler[{}]: {} -> {} [prio={}] {:#04x}:{:p}";

    dbgln(msg,
        Processor::current_id(), from_thread->tid().value(),
        thread->tid().value(), thread->priority(), thread->regs().cs, thread->regs().ip());
#endif

    auto& proc = Processor::current();
    if (!thread->is_initialized()) {
        proc.init_context(*thread, false);
        thread->set_initialized(true);
    }
    thread->set_state(Thread::State::Running);

    PerformanceManager::add_context_switch_perf_event(*from_thread, *thread);

    proc.switch_context(from_thread, thread);

    // NOTE: from_thread at this point reflects the thread we were
    // switched from, and thread reflects Thread::current()
    enter_current(*from_thread);
    VERIFY(thread == Thread::current());

    {
        SpinlockLocker lock(thread->get_lock());
        thread->dispatch_one_pending_signal();
    }
}

void Scheduler::enter_current(Thread& prev_thread)
{
    VERIFY(g_scheduler_lock.is_locked_by_current_processor());

    // We already recorded the scheduled time when entering the trap, so this merely accounts for the kernel time since then
    auto scheduler_time = Scheduler::current_time();
    prev_thread.update_time_scheduled(scheduler_time, true, true);
    auto* current_thread = Thread::current();
    current_thread->update_time_scheduled(scheduler_time, true, false);

    // NOTE: When doing an exec(), we will context switch from and to the same thread!
    //       In that case, we must not mark the previous thread as inactive.
    if (&prev_thread != current_thread)
        prev_thread.set_active(false);

    if (prev_thread.state() == Thread::State::Dying) {
        // If the thread we switched from is marked as dying, then notify
        // the finalizer. Note that as soon as we leave the scheduler lock
        // the finalizer may free from_thread!
        notify_finalizer();
    }
}

void Scheduler::leave_on_first_switch(u32 flags)
{
    // This is called when a thread is switched into for the first time.
    // At this point, enter_current has already be called, but because
    // Scheduler::context_switch is not in the call stack we need to
    // clean up and release locks manually here
    g_scheduler_lock.unlock(flags);

    VERIFY(Processor::current_in_scheduler());
    Processor::set_current_in_scheduler(false);
}

void Scheduler::prepare_after_exec()
{
    // This is called after exec() when doing a context "switch" into
    // the new process. This is called from Processor::assume_context
    VERIFY(g_scheduler_lock.is_locked_by_current_processor());

    VERIFY(!Processor::current_in_scheduler());
    Processor::set_current_in_scheduler(true);
}

void Scheduler::prepare_for_idle_loop()
{
    // This is called when the CPU finished setting up the idle loop
    // and is about to run it. We need to acquire the scheduler lock
    VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
    g_scheduler_lock.lock();

    VERIFY(!Processor::current_in_scheduler());
    Processor::set_current_in_scheduler(true);
}

Process* Scheduler::colonel()
{
    VERIFY(s_colonel_process);
    return s_colonel_process;
}

static u64 current_time_tsc()
{
    return read_tsc();
}

static u64 current_time_monotonic()
{
    // We always need a precise timestamp here, we cannot rely on a coarse timestamp
    return (u64)TimeManagement::the().monotonic_time(TimePrecision::Precise).to_nanoseconds();
}

UNMAP_AFTER_INIT void Scheduler::initialize()
{
    VERIFY(Processor::is_initialized()); // sanity check

    // Figure out a good scheduling time source
    if (Processor::current().has_feature(CPUFeature::TSC)) {
        // TODO: only use if TSC is running at a constant frequency?
        current_time = current_time_tsc;
    } else {
        // TODO: Using HPET is rather slow, can we use any other time source that may be faster?
        current_time = current_time_monotonic;
    }

    RefPtr<Thread> idle_thread;
    g_finalizer_wait_queue = new WaitQueue;

    g_finalizer_has_work.store(false, AK::MemoryOrder::memory_order_release);
    s_colonel_process = Process::create_kernel_process(idle_thread, KString::must_create("colonel"), idle_loop, nullptr, 1, Process::RegisterProcess::No).leak_ref();
    VERIFY(s_colonel_process);
    VERIFY(idle_thread);
    idle_thread->set_priority(THREAD_PRIORITY_MIN);
    idle_thread->set_name(KString::must_create("idle thread #0"));

    set_idle_thread(idle_thread);
}

UNMAP_AFTER_INIT void Scheduler::set_idle_thread(Thread* idle_thread)
{
    idle_thread->set_idle_thread();
    Processor::current().set_idle_thread(*idle_thread);
    Processor::set_current_thread(*idle_thread);
}

UNMAP_AFTER_INIT Thread* Scheduler::create_ap_idle_thread(u32 cpu)
{
    VERIFY(cpu != 0);
    // This function is called on the bsp, but creates an idle thread for another AP
    VERIFY(Processor::is_bootstrap_processor());

    VERIFY(s_colonel_process);
    Thread* idle_thread = s_colonel_process->create_kernel_thread(idle_loop, nullptr, THREAD_PRIORITY_MIN, MUST(KString::formatted("idle thread #{}", cpu)), 1 << cpu, false);
    VERIFY(idle_thread);
    return idle_thread;
}

void Scheduler::add_time_scheduled(u64 time_to_add, bool is_kernel)
{
    g_total_time_scheduled.with([&](auto& total_time_scheduled) {
        total_time_scheduled.total += time_to_add;
        if (is_kernel)
            total_time_scheduled.total_kernel += time_to_add;
    });
}

void Scheduler::timer_tick(RegisterState const& regs)
{
    VERIFY_INTERRUPTS_DISABLED();
    VERIFY(Processor::current_in_irq());

    auto* current_thread = Processor::current_thread();
    if (!current_thread)
        return;

    // Sanity checks
    VERIFY(current_thread->current_trap());
    VERIFY(current_thread->current_trap()->regs == &regs);

#if !SCHEDULE_ON_ALL_PROCESSORS
    if (!Processor::is_bootstrap_processor())
        return; // TODO: This prevents scheduling on other CPUs!
#endif

    if (current_thread->process().is_kernel_process()) {
        // Because the previous mode when entering/exiting kernel threads never changes
        // we never update the time scheduled. So we need to update it manually on the
        // timer interrupt
        current_thread->update_time_scheduled(current_time(), true, false);
    }

    if (current_thread->previous_mode() == Thread::PreviousMode::UserMode && current_thread->should_die() && !current_thread->is_blocked()) {
        SpinlockLocker scheduler_lock(g_scheduler_lock);
        dbgln_if(SCHEDULER_DEBUG, "Scheduler[{}]: Terminating user mode thread {}", Processor::current_id(), *current_thread);
        current_thread->set_state(Thread::State::Dying);
        Processor::current().invoke_scheduler_async();
        return;
    }

    if (current_thread->tick())
        return;

    if (!current_thread->is_idle_thread() && !peek_next_runnable_thread()) {
        // If no other thread is ready to be scheduled we don't need to
        // switch to the idle thread. Just give the current thread another
        // time slice and let it run!
        current_thread->set_ticks_left(time_slice_for(*current_thread));
        current_thread->did_schedule();
        dbgln_if(SCHEDULER_DEBUG, "Scheduler[{}]: No other threads ready, give {} another timeslice", Processor::current_id(), *current_thread);
        return;
    }

    VERIFY_INTERRUPTS_DISABLED();
    VERIFY(Processor::current_in_irq());
    Processor::current().invoke_scheduler_async();
}

void Scheduler::invoke_async()
{
    VERIFY_INTERRUPTS_DISABLED();
    VERIFY(!Processor::current_in_irq());

    // Since this function is called when leaving critical sections (such
    // as a Spinlock), we need to check if we're not already doing this
    // to prevent recursion
    if (!Processor::current_in_scheduler())
        pick_next();
}

void Scheduler::notify_finalizer()
{
    if (!g_finalizer_has_work.exchange(true, AK::MemoryOrder::memory_order_acq_rel))
        g_finalizer_wait_queue->wake_all();
}

void Scheduler::idle_loop(void*)
{
    auto& proc = Processor::current();
    dbgln("Scheduler[{}]: idle loop running", proc.id());
    VERIFY(are_interrupts_enabled());

    for (;;) {
        proc.idle_begin();
        asm("hlt");

        proc.idle_end();
        VERIFY_INTERRUPTS_ENABLED();
#if SCHEDULE_ON_ALL_PROCESSORS
        yield();
#else
        if (Processor::current_id() == 0)
            yield();
#endif
    }
}

void Scheduler::dump_scheduler_state(bool with_stack_traces)
{
    dump_thread_list(with_stack_traces);
}

bool Scheduler::is_initialized()
{
    // The scheduler is initialized iff the idle thread exists
    return Processor::idle_thread() != nullptr;
}

TotalTimeScheduled Scheduler::get_total_time_scheduled()
{
    return g_total_time_scheduled.with([&](auto& total_time_scheduled) { return total_time_scheduled; });
}

void dump_thread_list(bool with_stack_traces)
{
    dbgln("Scheduler thread list for processor {}:", Processor::current_id());

    auto get_cs = [](Thread& thread) -> u16 {
        if (!thread.current_trap())
            return thread.regs().cs;
        return thread.get_register_dump_from_stack().cs;
    };

    auto get_eip = [](Thread& thread) -> u32 {
        if (!thread.current_trap())
            return thread.regs().ip();
        return thread.get_register_dump_from_stack().ip();
    };

    Thread::for_each([&](Thread& thread) {
        switch (thread.state()) {
        case Thread::State::Dying:
            dmesgln("  {:14} {:30} @ {:04x}:{:08x} Finalizable: {}, (nsched: {})",
                thread.state_string(),
                thread,
                get_cs(thread),
                get_eip(thread),
                thread.is_finalizable(),
                thread.times_scheduled());
            break;
        default:
            dmesgln("  {:14} Pr:{:2} {:30} @ {:04x}:{:08x} (nsched: {})",
                thread.state_string(),
                thread.priority(),
                thread,
                get_cs(thread),
                get_eip(thread),
                thread.times_scheduled());
            break;
        }
        if (with_stack_traces) {
            auto trace_or_error = thread.backtrace();
            if (!trace_or_error.is_error()) {
                auto trace = trace_or_error.release_value();
                dbgln("Backtrace:");
                kernelputstr(trace->characters(), trace->length());
            }
        }
        return IterationDecision::Continue;
    });
}

}