1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
|
#include "Scheduler.h"
#include "Process.h"
#include "RTC.h"
#include "i8253.h"
#include <AK/TemporaryChange.h>
#include <Kernel/Alarm.h>
//#define LOG_EVERY_CONTEXT_SWITCH
//#define SCHEDULER_DEBUG
static dword time_slice_for(Process::Priority priority)
{
// One time slice unit == 1ms
switch (priority) {
case Process::HighPriority:
return 50;
case Process::NormalPriority:
return 15;
case Process::LowPriority:
return 5;
case Process::IdlePriority:
return 1;
}
ASSERT_NOT_REACHED();
}
Thread* current;
Thread* g_last_fpu_thread;
Thread* g_finalizer;
static Process* s_colonel_process;
qword g_uptime;
struct TaskRedirectionData {
word selector;
TSS32 tss;
};
static TaskRedirectionData s_redirection;
static bool s_active;
bool Scheduler::is_active()
{
return s_active;
}
bool Scheduler::pick_next()
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(!s_active);
TemporaryChange<bool> change(s_active, true);
ASSERT(s_active);
if (!current) {
// XXX: The first ever context_switch() goes to the idle process.
// This to setup a reliable place we can return to.
return context_switch(s_colonel_process->main_thread());
}
struct timeval now;
kgettimeofday(now);
auto now_sec = now.tv_sec;
auto now_usec = now.tv_usec;
// Check and unblock threads whose wait conditions have been met.
Thread::for_each([&] (Thread& thread) {
auto& process = thread.process();
if (thread.state() == Thread::BlockedSleep) {
if (thread.wakeup_time() <= g_uptime)
thread.unblock();
return IterationDecision::Continue;
}
if (thread.state() == Thread::BlockedWait) {
process.for_each_child([&] (Process& child) {
if (!child.is_dead())
return true;
if (thread.waitee_pid() == -1 || thread.waitee_pid() == child.pid()) {
thread.m_waitee_pid = child.pid();
thread.unblock();
return false;
}
return true;
});
return IterationDecision::Continue;
}
if (thread.state() == Thread::BlockedRead) {
ASSERT(thread.m_blocked_fd != -1);
// FIXME: Block until the amount of data wanted is available.
if (process.m_fds[thread.m_blocked_fd].descriptor->can_read(process))
thread.unblock();
return IterationDecision::Continue;
}
if (thread.state() == Thread::BlockedWrite) {
ASSERT(thread.m_blocked_fd != -1);
if (process.m_fds[thread.m_blocked_fd].descriptor->can_write(process))
thread.unblock();
return IterationDecision::Continue;
}
if (thread.state() == Thread::BlockedConnect) {
ASSERT(thread.m_blocked_socket);
if (thread.m_blocked_socket->is_connected())
thread.unblock();
return IterationDecision::Continue;
}
if (thread.state() == Thread::BlockedReceive) {
ASSERT(thread.m_blocked_socket);
auto& socket = *thread.m_blocked_socket;
// FIXME: Block until the amount of data wanted is available.
bool timed_out = now_sec > socket.receive_deadline().tv_sec || (now_sec == socket.receive_deadline().tv_sec && now_usec >= socket.receive_deadline().tv_usec);
if (timed_out || socket.can_read(SocketRole::None)) {
thread.unblock();
thread.m_blocked_socket = nullptr;
return IterationDecision::Continue;
}
return IterationDecision::Continue;
}
if (thread.state() == Thread::BlockedSelect) {
if (thread.m_select_has_timeout) {
if (now_sec > thread.m_select_timeout.tv_sec || (now_sec == thread.m_select_timeout.tv_sec && now_usec >= thread.m_select_timeout.tv_usec)) {
thread.unblock();
return IterationDecision::Continue;
}
}
for (int fd : thread.m_select_read_fds) {
if (process.m_fds[fd].descriptor->can_read(process)) {
thread.unblock();
return IterationDecision::Continue;
}
}
for (int fd : thread.m_select_write_fds) {
if (process.m_fds[fd].descriptor->can_write(process)) {
thread.unblock();
return IterationDecision::Continue;
}
}
return IterationDecision::Continue;
}
if (thread.state() == Thread::BlockedSnoozing) {
if (thread.m_snoozing_alarm->is_ringing()) {
thread.m_snoozing_alarm = nullptr;
thread.unblock();
}
return IterationDecision::Continue;
}
if (thread.state() == Thread::Skip1SchedulerPass) {
thread.set_state(Thread::Skip0SchedulerPasses);
return IterationDecision::Continue;
}
if (thread.state() == Thread::Skip0SchedulerPasses) {
thread.set_state(Thread::Runnable);
return IterationDecision::Continue;
}
if (thread.state() == Thread::Dying) {
ASSERT(g_finalizer);
if (g_finalizer->state() == Thread::BlockedLurking)
g_finalizer->unblock();
return IterationDecision::Continue;
}
return IterationDecision::Continue;
});
Process::for_each([&] (Process& process) {
if (process.is_dead()) {
if (current != &process.main_thread() && (!process.ppid() || !Process::from_pid(process.ppid()))) {
auto name = process.name();
auto pid = process.pid();
auto exit_status = Process::reap(process);
dbgprintf("reaped unparented process %s(%u), exit status: %u\n", name.characters(), pid, exit_status);
}
}
return true;
});
// Dispatch any pending signals.
// FIXME: Do we really need this to be a separate pass over the process list?
Thread::for_each_living([] (Thread& thread) {
if (!thread.has_unmasked_pending_signals())
return true;
// FIXME: It would be nice if the Scheduler didn't have to worry about who is "current"
// For now, avoid dispatching signals to "current" and do it in a scheduling pass
// while some other process is interrupted. Otherwise a mess will be made.
if (&thread == current)
return true;
// We know how to interrupt blocked processes, but if they are just executing
// at some random point in the kernel, let them continue. They'll be in userspace
// sooner or later and we can deliver the signal then.
// FIXME: Maybe we could check when returning from a syscall if there's a pending
// signal and dispatch it then and there? Would that be doable without the
// syscall effectively being "interrupted" despite having completed?
if (thread.in_kernel() && !thread.is_blocked() && !thread.is_stopped())
return true;
// NOTE: dispatch_one_pending_signal() may unblock the process.
bool was_blocked = thread.is_blocked();
if (thread.dispatch_one_pending_signal() == ShouldUnblockThread::No)
return true;
if (was_blocked) {
dbgprintf("Unblock %s(%u) due to signal\n", thread.process().name().characters(), thread.pid());
thread.m_was_interrupted_while_blocked = true;
thread.unblock();
}
return true;
});
#ifdef SCHEDULER_DEBUG
dbgprintf("Scheduler choices:\n");
for (auto* thread = g_threads->head(); thread; thread = thread->next()) {
//if (process->state() == Thread::BlockedWait || process->state() == Thread::BlockedSleep)
// continue;
auto* process = &thread->process();
dbgprintf("[K%x] % 12s %s(%u:%u) @ %w:%x\n", process, to_string(thread->state()), process->name().characters(), process->pid(), thread->tid(), thread->tss().cs, thread->tss().eip);
}
#endif
auto* previous_head = g_threads->head();
for (;;) {
// Move head to tail.
g_threads->append(g_threads->remove_head());
auto* thread = g_threads->head();
if (!thread->process().is_being_inspected() && (thread->state() == Thread::Runnable || thread->state() == Thread::Running)) {
#ifdef SCHEDULER_DEBUG
kprintf("switch to %s(%u:%u) @ %w:%x\n", thread->process().name().characters(), thread->process().pid(), thread->tid(), thread->tss().cs, thread->tss().eip);
#endif
return context_switch(*thread);
}
if (thread == previous_head) {
// Back at process_head, nothing wants to run. Send in the colonel!
return context_switch(s_colonel_process->main_thread());
}
}
}
bool Scheduler::donate_to(Thread* beneficiary, const char* reason)
{
InterruptDisabler disabler;
if (!Thread::is_thread(beneficiary))
return false;
(void)reason;
unsigned ticks_left = current->ticks_left();
if (!beneficiary || beneficiary->state() != Thread::Runnable || ticks_left <= 1)
return yield();
unsigned ticks_to_donate = min(ticks_left - 1, time_slice_for(beneficiary->process().priority()));
#ifdef SCHEDULER_DEBUG
dbgprintf("%s(%u:%u) donating %u ticks to %s(%u:%u), reason=%s\n", current->process().name().characters(), current->pid(), current->tid(), ticks_to_donate, beneficiary->process().name().characters(), beneficiary->pid(), beneficiary->tid(), reason);
#endif
context_switch(*beneficiary);
beneficiary->set_ticks_left(ticks_to_donate);
switch_now();
return false;
}
bool Scheduler::yield()
{
InterruptDisabler disabler;
ASSERT(current);
// dbgprintf("%s(%u:%u) yield()\n", current->process().name().characters(), current->pid(), current->tid());
if (!pick_next())
return false;
// dbgprintf("yield() jumping to new process: sel=%x, %s(%u:%u)\n", current->far_ptr().selector, current->process().name().characters(), current->pid(), current->tid());
switch_now();
return true;
}
void Scheduler::pick_next_and_switch_now()
{
bool someone_wants_to_run = pick_next();
ASSERT(someone_wants_to_run);
switch_now();
}
void Scheduler::switch_now()
{
Descriptor& descriptor = get_gdt_entry(current->selector());
descriptor.type = 9;
flush_gdt();
asm("sti\n"
"ljmp *(%%eax)\n"
::"a"(¤t->far_ptr())
);
}
bool Scheduler::context_switch(Thread& thread)
{
thread.set_ticks_left(time_slice_for(thread.process().priority()));
thread.did_schedule();
if (current == &thread)
return false;
if (current) {
// If the last process hasn't blocked (still marked as running),
// mark it as runnable for the next round.
if (current->state() == Thread::Running)
current->set_state(Thread::Runnable);
#ifdef LOG_EVERY_CONTEXT_SWITCH
dbgprintf("Scheduler: %s(%u:%u) -> %s(%u:%u) %w:%x\n",
current->process().name().characters(), current->process().pid(), current->tid(),
thread.process().name().characters(), thread.process().pid(), thread.tid(),
thread.tss().cs, thread.tss().eip);
#endif
}
current = &thread;
thread.set_state(Thread::Running);
if (!thread.selector()) {
thread.set_selector(gdt_alloc_entry());
auto& descriptor = get_gdt_entry(thread.selector());
descriptor.set_base(&thread.tss());
descriptor.set_limit(0xffff);
descriptor.dpl = 0;
descriptor.segment_present = 1;
descriptor.granularity = 1;
descriptor.zero = 0;
descriptor.operation_size = 1;
descriptor.descriptor_type = 0;
}
auto& descriptor = get_gdt_entry(thread.selector());
descriptor.type = 11; // Busy TSS
flush_gdt();
return true;
}
static void initialize_redirection()
{
auto& descriptor = get_gdt_entry(s_redirection.selector);
descriptor.set_base(&s_redirection.tss);
descriptor.set_limit(0xffff);
descriptor.dpl = 0;
descriptor.segment_present = 1;
descriptor.granularity = 1;
descriptor.zero = 0;
descriptor.operation_size = 1;
descriptor.descriptor_type = 0;
descriptor.type = 9;
flush_gdt();
}
void Scheduler::prepare_for_iret_to_new_process()
{
auto& descriptor = get_gdt_entry(s_redirection.selector);
descriptor.type = 9;
s_redirection.tss.backlink = current->selector();
load_task_register(s_redirection.selector);
}
void Scheduler::prepare_to_modify_tss(Thread& thread)
{
// This ensures that a currently running process modifying its own TSS
// in order to yield() and end up somewhere else doesn't just end up
// right after the yield().
if (current == &thread)
load_task_register(s_redirection.selector);
}
Process* Scheduler::colonel()
{
return s_colonel_process;
}
void Scheduler::initialize()
{
s_redirection.selector = gdt_alloc_entry();
initialize_redirection();
s_colonel_process = Process::create_kernel_process("colonel", nullptr);
// Make sure the colonel uses a smallish time slice.
s_colonel_process->set_priority(Process::IdlePriority);
load_task_register(s_redirection.selector);
}
void Scheduler::timer_tick(RegisterDump& regs)
{
if (!current)
return;
++g_uptime;
if (current->tick())
return;
current->tss().gs = regs.gs;
current->tss().fs = regs.fs;
current->tss().es = regs.es;
current->tss().ds = regs.ds;
current->tss().edi = regs.edi;
current->tss().esi = regs.esi;
current->tss().ebp = regs.ebp;
current->tss().ebx = regs.ebx;
current->tss().edx = regs.edx;
current->tss().ecx = regs.ecx;
current->tss().eax = regs.eax;
current->tss().eip = regs.eip;
current->tss().cs = regs.cs;
current->tss().eflags = regs.eflags;
// Compute process stack pointer.
// Add 12 for CS, EIP, EFLAGS (interrupt mechanic)
current->tss().esp = regs.esp + 12;
current->tss().ss = regs.ss;
if ((current->tss().cs & 3) != 0) {
current->tss().ss = regs.ss_if_crossRing;
current->tss().esp = regs.esp_if_crossRing;
}
if (!pick_next())
return;
prepare_for_iret_to_new_process();
// Set the NT (nested task) flag.
asm(
"pushf\n"
"orl $0x00004000, (%esp)\n"
"popf\n"
);
}
|