summaryrefslogtreecommitdiff
path: root/Kernel/Scheduler.cpp
blob: 1fd17e1ae76c330d02e706773cbb7595d69d38a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
/*
 * Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <AK/QuickSort.h>
#include <AK/ScopeGuard.h>
#include <AK/TemporaryChange.h>
#include <AK/Time.h>
#include <Kernel/Debug.h>
#include <Kernel/PerformanceEventBuffer.h>
#include <Kernel/Process.h>
#include <Kernel/RTC.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/TimerQueue.h>

namespace Kernel {

class SchedulerPerProcessorData {
    AK_MAKE_NONCOPYABLE(SchedulerPerProcessorData);
    AK_MAKE_NONMOVABLE(SchedulerPerProcessorData);

public:
    SchedulerPerProcessorData() = default;

    WeakPtr<Thread> m_pending_beneficiary;
    const char* m_pending_donate_reason { nullptr };
    bool m_in_scheduler { true };
};

SchedulerData* g_scheduler_data;
RecursiveSpinLock g_scheduler_lock;

void Scheduler::init_thread(Thread& thread)
{
    ASSERT(g_scheduler_data);
    g_scheduler_data->m_nonrunnable_threads.append(thread);
}

static u32 time_slice_for(const Thread& thread)
{
    // One time slice unit == 4ms (assuming 250 ticks/second)
    if (&thread == Processor::current().idle_thread())
        return 1;
    return 2;
}

Thread* g_finalizer;
WaitQueue* g_finalizer_wait_queue;
Atomic<bool> g_finalizer_has_work { false };
static Process* s_colonel_process;

void Scheduler::start()
{
    ASSERT_INTERRUPTS_DISABLED();

    // We need to acquire our scheduler lock, which will be released
    // by the idle thread once control transferred there
    g_scheduler_lock.lock();

    auto& processor = Processor::current();
    processor.set_scheduler_data(*new SchedulerPerProcessorData());
    ASSERT(processor.is_initialized());
    auto& idle_thread = *processor.idle_thread();
    ASSERT(processor.current_thread() == &idle_thread);
    ASSERT(processor.idle_thread() == &idle_thread);
    idle_thread.set_ticks_left(time_slice_for(idle_thread));
    idle_thread.did_schedule();
    idle_thread.set_initialized(true);
    processor.init_context(idle_thread, false);
    idle_thread.set_state(Thread::Running);
    ASSERT(idle_thread.affinity() == (1u << processor.get_id()));
    processor.initialize_context_switching(idle_thread);
    ASSERT_NOT_REACHED();
}

bool Scheduler::pick_next()
{
    ASSERT_INTERRUPTS_DISABLED();

    auto current_thread = Thread::current();

    // Set the m_in_scheduler flag before acquiring the spinlock. This
    // prevents a recursive call into Scheduler::invoke_async upon
    // leaving the scheduler lock.
    ScopedCritical critical;
    auto& scheduler_data = Processor::current().get_scheduler_data();
    scheduler_data.m_in_scheduler = true;
    ScopeGuard guard(
        []() {
            // We may be on a different processor after we got switched
            // back to this thread!
            auto& scheduler_data = Processor::current().get_scheduler_data();
            ASSERT(scheduler_data.m_in_scheduler);
            scheduler_data.m_in_scheduler = false;
        });

    ScopedSpinLock lock(g_scheduler_lock);

    if (current_thread->should_die() && current_thread->state() == Thread::Running) {
        // Rather than immediately killing threads, yanking the kernel stack
        // away from them (which can lead to e.g. reference leaks), we always
        // allow Thread::wait_on to return. This allows the kernel stack to
        // clean up and eventually we'll get here shortly before transitioning
        // back to user mode (from Processor::exit_trap). At this point we
        // no longer want to schedule this thread. We can't wait until
        // Scheduler::enter_current because we don't want to allow it to
        // transition back to user mode.

        if constexpr (SCHEDULER_DEBUG)
            dbgln("Scheduler[{}]: Thread {} is dying", Processor::id(), *current_thread);

        current_thread->set_state(Thread::Dying);
    }

    if constexpr (SCHEDULER_RUNNABLE_DEBUG) {
        dbgln("Scheduler[{}j]: Non-runnables:", Processor::id());
        Scheduler::for_each_nonrunnable([&](Thread& thread) -> IterationDecision {
            if (thread.state() == Thread::Dying) {
                dbgln("  {:12} {} @ {:04x}:{:08x} Finalizable: {}",
                    thread.state_string(),
                    thread,
                    thread.tss().cs,
                    thread.tss().eip,
                    thread.is_finalizable());
            } else {
                dbgln("  {:12} {} @ {:04x}:{:08x}",
                    thread.state_string(),
                    thread,
                    thread.tss().cs,
                    thread.tss().eip);
            }

            return IterationDecision::Continue;
        });

        dbgln("Scheduler[{}j]: Runnables:", Processor::id());
        Scheduler::for_each_runnable([](Thread& thread) -> IterationDecision {
            dbgln("  {:3}/{:2} {:12} @ {:04x}:{:08x}",
                thread.effective_priority(),
                thread.priority(),
                thread.state_string(),
                thread.tss().cs,
                thread.tss().eip);

            return IterationDecision::Continue;
        });
    }

    Thread* thread_to_schedule = nullptr;

    auto pending_beneficiary = scheduler_data.m_pending_beneficiary.strong_ref();
    Vector<Thread*, 128> sorted_runnables;
    for_each_runnable([&](auto& thread) {
        if ((thread.affinity() & (1u << Processor::id())) == 0)
            return IterationDecision::Continue;
        if (thread.state() == Thread::Running && &thread != current_thread)
            return IterationDecision::Continue;
        sorted_runnables.append(&thread);
        if (&thread == pending_beneficiary) {
            thread_to_schedule = &thread;
            return IterationDecision::Break;
        }
        return IterationDecision::Continue;
    });

    if (thread_to_schedule) {
        // The thread we're supposed to donate to still exists
        const char* reason = scheduler_data.m_pending_donate_reason;
        scheduler_data.m_pending_beneficiary = nullptr;
        scheduler_data.m_pending_donate_reason = nullptr;

        // We need to leave our first critical section before switching context,
        // but since we're still holding the scheduler lock we're still in a critical section
        critical.leave();

        dbgln<SCHEDULER_DEBUG>("Processing pending donate to {} reason={}", *thread_to_schedule, reason);
        return donate_to_and_switch(thread_to_schedule, reason);
    }

    // Either we're not donating or the beneficiary disappeared.
    // Either way clear any pending information
    scheduler_data.m_pending_beneficiary = nullptr;
    scheduler_data.m_pending_donate_reason = nullptr;

    quick_sort(sorted_runnables, [](auto& a, auto& b) { return a->effective_priority() >= b->effective_priority(); });

    for (auto* thread : sorted_runnables) {
        if (thread->process().exec_tid() && thread->process().exec_tid() != thread->tid())
            continue;

        ASSERT(thread->state() == Thread::Runnable || thread->state() == Thread::Running);

        if (!thread_to_schedule) {
            thread->m_extra_priority = 0;
            thread_to_schedule = thread;
        } else {
            thread->m_extra_priority++;
        }
    }

    if (!thread_to_schedule)
        thread_to_schedule = Processor::current().idle_thread();

    if constexpr (SCHEDULER_DEBUG) {
        dbgln("Scheduler[{}]: Switch to {} @ {:04x}:{:08x}",
            Processor::id(),
            *thread_to_schedule,
            thread_to_schedule->tss().cs, thread_to_schedule->tss().eip);
    }

    // We need to leave our first critical section before switching context,
    // but since we're still holding the scheduler lock we're still in a critical section
    critical.leave();

    thread_to_schedule->set_ticks_left(time_slice_for(*thread_to_schedule));
    return context_switch(thread_to_schedule);
}

bool Scheduler::yield()
{
    InterruptDisabler disabler;
    auto& proc = Processor::current();
    auto& scheduler_data = proc.get_scheduler_data();

    // Clear any pending beneficiary
    scheduler_data.m_pending_beneficiary = nullptr;
    scheduler_data.m_pending_donate_reason = nullptr;

    auto current_thread = Thread::current();
    dbgln<SCHEDULER_DEBUG>("Scheduler[{}]: yielding thread {} in_irq={}", proc.get_id(), *current_thread, proc.in_irq());
    ASSERT(current_thread != nullptr);
    if (proc.in_irq() || proc.in_critical()) {
        // If we're handling an IRQ we can't switch context, or we're in
        // a critical section where we don't want to switch contexts, then
        // delay until exiting the trap or critical section
        proc.invoke_scheduler_async();
        return false;
    }

    if (!Scheduler::pick_next())
        return false;

    if constexpr (SCHEDULER_DEBUG)
        dbgln("Scheduler[{}]: yield returns to thread {} in_irq={}", Processor::id(), *current_thread, Processor::current().in_irq());
    return true;
}

bool Scheduler::donate_to_and_switch(Thread* beneficiary, [[maybe_unused]] const char* reason)
{
    ASSERT(g_scheduler_lock.own_lock());

    auto& proc = Processor::current();
    ASSERT(proc.in_critical() == 1);

    unsigned ticks_left = Thread::current()->ticks_left();
    if (!beneficiary || beneficiary->state() != Thread::Runnable || ticks_left <= 1)
        return Scheduler::yield();

    unsigned ticks_to_donate = min(ticks_left - 1, time_slice_for(*beneficiary));
    dbgln<SCHEDULER_DEBUG>("Scheduler[{}]: Donating {} ticks to {}, reason={}", proc.get_id(), ticks_to_donate, *beneficiary, reason);
    beneficiary->set_ticks_left(ticks_to_donate);

    return Scheduler::context_switch(beneficiary);
}

bool Scheduler::donate_to(RefPtr<Thread>& beneficiary, const char* reason)
{
    ASSERT(beneficiary);

    if (beneficiary == Thread::current())
        return Scheduler::yield();

    // Set the m_in_scheduler flag before acquiring the spinlock. This
    // prevents a recursive call into Scheduler::invoke_async upon
    // leaving the scheduler lock.
    ScopedCritical critical;
    auto& proc = Processor::current();
    auto& scheduler_data = proc.get_scheduler_data();
    scheduler_data.m_in_scheduler = true;
    ScopeGuard guard(
        []() {
            // We may be on a different processor after we got switched
            // back to this thread!
            auto& scheduler_data = Processor::current().get_scheduler_data();
            ASSERT(scheduler_data.m_in_scheduler);
            scheduler_data.m_in_scheduler = false;
        });

    ASSERT(!proc.in_irq());

    if (proc.in_critical() > 1) {
        scheduler_data.m_pending_beneficiary = beneficiary; // Save the beneficiary
        scheduler_data.m_pending_donate_reason = reason;
        proc.invoke_scheduler_async();
        return false;
    }

    ScopedSpinLock lock(g_scheduler_lock);

    // "Leave" the critical section before switching context. Since we
    // still hold the scheduler lock, we're not actually leaving it.
    // Processor::switch_context expects Processor::in_critical() to be 1
    critical.leave();
    donate_to_and_switch(beneficiary, reason);
    return false;
}

bool Scheduler::context_switch(Thread* thread)
{
    thread->did_schedule();

    auto from_thread = Thread::current();
    if (from_thread == thread)
        return false;

    if (from_thread) {
        // If the last process hasn't blocked (still marked as running),
        // mark it as runnable for the next round.
        if (from_thread->state() == Thread::Running)
            from_thread->set_state(Thread::Runnable);

#ifdef LOG_EVERY_CONTEXT_SWITCH
        dbgln("Scheduler[{}]: {} -> {} [prio={}] {:04x}:{:08x}", Processor::id(), from_thread->tid().value(), thread->tid().value(), thread->priority(), thread->tss().cs, thread->tss().eip);
#endif
    }

    auto& proc = Processor::current();
    if (!thread->is_initialized()) {
        proc.init_context(*thread, false);
        thread->set_initialized(true);
    }
    thread->set_state(Thread::Running);

    // Mark it as active because we are using this thread. This is similar
    // to comparing it with Processor::current_thread, but when there are
    // multiple processors there's no easy way to check whether the thread
    // is actually still needed. This prevents accidental finalization when
    // a thread is no longer in Running state, but running on another core.
    thread->set_active(true);

    proc.switch_context(from_thread, thread);

    // NOTE: from_thread at this point reflects the thread we were
    // switched from, and thread reflects Thread::current()
    enter_current(*from_thread, false);
    ASSERT(thread == Thread::current());

#if ARCH(I386)
    if (thread->process().is_user_process()) {
        auto iopl = get_iopl_from_eflags(Thread::current()->get_register_dump_from_stack().eflags);
        if (iopl != 0) {
            dbgln("PANIC: Switched to thread {} with non-zero IOPL={}", Thread::current()->tid().value(), iopl);
            Processor::halt();
        }
    }
#endif

    return true;
}

void Scheduler::enter_current(Thread& prev_thread, bool is_first)
{
    ASSERT(g_scheduler_lock.own_lock());
    prev_thread.set_active(false);
    if (prev_thread.state() == Thread::Dying) {
        // If the thread we switched from is marked as dying, then notify
        // the finalizer. Note that as soon as we leave the scheduler lock
        // the finalizer may free from_thread!
        notify_finalizer();
    } else if (!is_first) {
        // Check if we have any signals we should deliver (even if we don't
        // end up switching to another thread).
        auto current_thread = Thread::current();
        if (!current_thread->is_in_block() && current_thread->previous_mode() != Thread::PreviousMode::KernelMode) {
            ScopedSpinLock lock(current_thread->get_lock());
            if (current_thread->state() == Thread::Running && current_thread->pending_signals_for_state()) {
                current_thread->dispatch_one_pending_signal();
            }
        }
    }
}

void Scheduler::leave_on_first_switch(u32 flags)
{
    // This is called when a thread is switched into for the first time.
    // At this point, enter_current has already be called, but because
    // Scheduler::context_switch is not in the call stack we need to
    // clean up and release locks manually here
    g_scheduler_lock.unlock(flags);
    auto& scheduler_data = Processor::current().get_scheduler_data();
    ASSERT(scheduler_data.m_in_scheduler);
    scheduler_data.m_in_scheduler = false;
}

void Scheduler::prepare_after_exec()
{
    // This is called after exec() when doing a context "switch" into
    // the new process. This is called from Processor::assume_context
    ASSERT(g_scheduler_lock.own_lock());
    auto& scheduler_data = Processor::current().get_scheduler_data();
    ASSERT(!scheduler_data.m_in_scheduler);
    scheduler_data.m_in_scheduler = true;
}

void Scheduler::prepare_for_idle_loop()
{
    // This is called when the CPU finished setting up the idle loop
    // and is about to run it. We need to acquire he scheduler lock
    ASSERT(!g_scheduler_lock.own_lock());
    g_scheduler_lock.lock();
    auto& scheduler_data = Processor::current().get_scheduler_data();
    ASSERT(!scheduler_data.m_in_scheduler);
    scheduler_data.m_in_scheduler = true;
}

Process* Scheduler::colonel()
{
    ASSERT(s_colonel_process);
    return s_colonel_process;
}

void Scheduler::initialize()
{
    ASSERT(&Processor::current() != nullptr); // sanity check

    RefPtr<Thread> idle_thread;
    g_scheduler_data = new SchedulerData;
    g_finalizer_wait_queue = new WaitQueue;

    g_finalizer_has_work.store(false, AK::MemoryOrder::memory_order_release);
    s_colonel_process = Process::create_kernel_process(idle_thread, "colonel", idle_loop, nullptr, 1).leak_ref();
    ASSERT(s_colonel_process);
    ASSERT(idle_thread);
    idle_thread->set_priority(THREAD_PRIORITY_MIN);
    idle_thread->set_name(StringView("idle thread #0"));

    set_idle_thread(idle_thread);
}

void Scheduler::set_idle_thread(Thread* idle_thread)
{
    Processor::current().set_idle_thread(*idle_thread);
    Processor::current().set_current_thread(*idle_thread);
}

Thread* Scheduler::create_ap_idle_thread(u32 cpu)
{
    ASSERT(cpu != 0);
    // This function is called on the bsp, but creates an idle thread for another AP
    ASSERT(Processor::id() == 0);

    ASSERT(s_colonel_process);
    Thread* idle_thread = s_colonel_process->create_kernel_thread(idle_loop, nullptr, THREAD_PRIORITY_MIN, String::format("idle thread #%u", cpu), 1 << cpu, false);
    ASSERT(idle_thread);
    return idle_thread;
}

void Scheduler::timer_tick(const RegisterState& regs)
{
    ASSERT_INTERRUPTS_DISABLED();
    ASSERT(Processor::current().in_irq());

    auto current_thread = Processor::current_thread();
    if (!current_thread)
        return;

    // Sanity checks
    ASSERT(current_thread->current_trap());
    ASSERT(current_thread->current_trap()->regs == &regs);

    bool is_bsp = Processor::id() == 0;
    if (!is_bsp)
        return; // TODO: This prevents scheduling on other CPUs!
    if (current_thread->process().is_profiling()) {
        ASSERT(current_thread->process().perf_events());
        auto& perf_events = *current_thread->process().perf_events();
        [[maybe_unused]] auto rc = perf_events.append_with_eip_and_ebp(regs.eip, regs.ebp, PERF_EVENT_SAMPLE, 0, 0);
    }

    if (current_thread->tick())
        return;

    ASSERT_INTERRUPTS_DISABLED();
    ASSERT(Processor::current().in_irq());
    Processor::current().invoke_scheduler_async();
}

void Scheduler::invoke_async()
{
    ASSERT_INTERRUPTS_DISABLED();
    auto& proc = Processor::current();
    ASSERT(!proc.in_irq());

    // Since this function is called when leaving critical sections (such
    // as a SpinLock), we need to check if we're not already doing this
    // to prevent recursion
    if (!proc.get_scheduler_data().m_in_scheduler)
        pick_next();
}

void Scheduler::yield_from_critical()
{
    auto& proc = Processor::current();
    ASSERT(proc.in_critical());
    ASSERT(!proc.in_irq());

    yield(); // Flag a context switch

    u32 prev_flags;
    u32 prev_crit = Processor::current().clear_critical(prev_flags, false);

    // Note, we may now be on a different CPU!
    Processor::current().restore_critical(prev_crit, prev_flags);
}

void Scheduler::notify_finalizer()
{
    if (g_finalizer_has_work.exchange(true, AK::MemoryOrder::memory_order_acq_rel) == false)
        g_finalizer_wait_queue->wake_all();
}

void Scheduler::idle_loop(void*)
{
    dbgln("Scheduler[{}]: idle loop running", Processor::id());
    ASSERT(are_interrupts_enabled());

    for (;;) {
        asm("hlt");

        if (Processor::id() == 0)
            yield();
    }
}

}