summaryrefslogtreecommitdiff
path: root/Kernel/Random.h
blob: e2c788fb3041da05e78b7d3ec1ac6d488867b266 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/*
 * Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
 * Copyright (c) 2020, Peter Elliott <pelliott@serenityos.org>
 *
 * SPDX-License-Identifier: BSD-2-Clause
 */

#pragma once

#include <AK/Assertions.h>
#include <AK/ByteBuffer.h>
#include <AK/Types.h>
#include <Kernel/Locking/Lockable.h>
#include <Kernel/Locking/Mutex.h>
#include <Kernel/StdLib.h>
#include <LibCrypto/Cipher/AES.h>
#include <LibCrypto/Cipher/Cipher.h>
#include <LibCrypto/Hash/SHA2.h>

namespace Kernel {

template<typename CipherT, typename HashT, int KeySize>
class FortunaPRNG {
public:
    constexpr static size_t pool_count = 32;
    constexpr static size_t reseed_threshold = 16;

    using CipherType = CipherT;
    using BlockType = typename CipherT::BlockType;
    using HashType = HashT;
    using DigestType = typename HashT::DigestType;

    FortunaPRNG()
        : m_counter(ByteBuffer::create_zeroed(BlockType::block_size()))
    {
    }

    bool get_random_bytes(Bytes buffer)
    {
        SpinlockLocker lock(m_lock);
        if (!is_ready())
            return false;
        if (m_p0_len >= reseed_threshold) {
            this->reseed();
        }

        VERIFY(is_seeded());

        // FIXME: More than 2^20 bytes cannot be generated without refreshing the key.
        VERIFY(buffer.size() < (1 << 20));

        typename CipherType::CTRMode cipher(m_key, KeySize, Crypto::Cipher::Intent::Encryption);

        auto counter_span = m_counter.bytes();
        cipher.key_stream(buffer, counter_span, &counter_span);

        // Extract a new key from the prng stream.
        Bytes key_span = m_key.bytes();
        cipher.key_stream(key_span, counter_span, &counter_span);
        return true;
    }

    template<typename T>
    void add_random_event(const T& event_data, size_t pool)
    {
        pool %= pool_count;
        if (pool == 0) {
            m_p0_len++;
        }
        m_pools[pool].update(reinterpret_cast<const u8*>(&event_data), sizeof(T));
    }

    [[nodiscard]] bool is_seeded() const
    {
        return m_reseed_number > 0;
    }

    [[nodiscard]] bool is_ready() const
    {
        VERIFY(m_lock.is_locked());
        return is_seeded() || m_p0_len >= reseed_threshold;
    }

    Spinlock& get_lock() { return m_lock; }

private:
    void reseed()
    {
        HashType new_key;
        new_key.update(m_key);
        for (size_t i = 0; i < pool_count; ++i) {
            if (m_reseed_number % (1u << i) == 0) {
                DigestType digest = m_pools[i].digest();
                new_key.update(digest.immutable_data(), digest.data_length());
            }
        }
        DigestType digest = new_key.digest();
        m_key = ByteBuffer::copy(digest.immutable_data(),
            digest.data_length());

        m_reseed_number++;
        m_p0_len = 0;
    }

    ByteBuffer m_counter;
    size_t m_reseed_number { 0 };
    size_t m_p0_len { 0 };
    ByteBuffer m_key;
    HashType m_pools[pool_count];
    Spinlock m_lock;
};

class KernelRng : public Lockable<FortunaPRNG<Crypto::Cipher::AESCipher, Crypto::Hash::SHA256, 256>> {
    AK_MAKE_ETERNAL;

public:
    KernelRng();
    static KernelRng& the();

    void wait_for_entropy();

    void wake_if_ready();

    Spinlock& get_lock() { return resource().get_lock(); }

private:
    WaitQueue m_seed_queue;
};

class EntropySource {
    template<typename T>
    struct Event {
        u64 timestamp;
        size_t source;
        T event_data;
    };

public:
    enum class Static : size_t {
        Interrupts,
        MaxHardcodedSourceIndex,
    };

    EntropySource()
        : m_source(next_source++)
    {
    }

    EntropySource(Static hardcoded_source)
        : m_source(static_cast<size_t>(hardcoded_source))
    {
    }

    template<typename T>
    void add_random_event(const T& event_data)
    {
        auto& kernel_rng = KernelRng::the();
        SpinlockLocker lock(kernel_rng.get_lock());
        // We don't lock this because on the off chance a pool is corrupted, entropy isn't lost.
        Event<T> event = { read_tsc(), m_source, event_data };
        kernel_rng.resource().add_random_event(event, m_pool);
        m_pool++;
        kernel_rng.wake_if_ready();
    }

private:
    static size_t next_source;
    size_t m_pool { 0 };
    size_t m_source;
};

// NOTE: These API's are primarily about expressing intent/needs in the calling code.
//       The only difference is that get_fast_random is guaranteed not to block.

void get_fast_random_bytes(Bytes);
bool get_good_random_bytes(Bytes bytes, bool allow_wait = true, bool fallback_to_fast = true);

template<typename T>
inline T get_fast_random()
{
    T value;
    Bytes bytes { reinterpret_cast<u8*>(&value), sizeof(T) };
    get_fast_random_bytes(bytes);
    return value;
}

template<typename T>
inline T get_good_random()
{
    T value;
    Bytes bytes { reinterpret_cast<u8*>(&value), sizeof(T) };
    get_good_random_bytes(bytes);
    return value;
}

}